Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 2, pp 365–371 | Cite as

Effects of Annealing Temperature on Microstructure and Magnetic Properties of Ni0.05Zn0.95Fe2O4 Nanoparticles

  • L. ArdaEmail author
  • N. Dogan
  • C. Boyraz
Original Paper

Abstract

The magnetic behavior of Ni0.05Zn0.95Fe2O4 nanoparticles synthesized by the sol–gel technique route was clarified To figure out the influence of annealing temperature on the structure of Ni0.05Zn0.95Fe2O4 particles, x-ray diffraction (XRD) tool was used and revealed spinel cubic structure without any secondary phases. The particle formation and sizes were obtained using scanning electron microscope (SEM). Elemental composition of the nanoparticles was also provided by an energy-dispersive x-ray analysis tool (EDX). The magnetic behaviors of the synthesized powders annealed at varying temperatures were determined by vibrating sample quantum design PPMS measurement system tool. The MH curves of the samples showed that the samples had S-shape but they reached no saturation state at the presence even at 30 kOe.

Keywords

NiZn ferrites Sol–gel Nanoparticles Magnetic measurement 

Notes

Acknowledgments

The support was provided by the Research Fund of Bahcesehir University with the project no: BAU-2010.

References

  1. 1.
    Gorter, E.W.: Saturation magnetization and crystal chemistry of ferrimagnetic oxides. Philips Res. Repts. 9, 295–320 (1954)Google Scholar
  2. 2.
    Selim, M.S., Turkey, G., Shouman, M.A., El-Shobaky, G.A.: Solid State Ionics. 120, 173 (1999)CrossRefGoogle Scholar
  3. 3.
    Deraz, N.M., Alarii, A.: Structural, morphological and magnetic properties of nano-crystalline zinc substituted cobalt ferrite system. J. Anal. Appl. Pyrolysis 94, 41–47 (2012)CrossRefGoogle Scholar
  4. 4.
    Ozin, G.A.: Characterization of semiconductor heterostructures and nanostructures. Adv. Mater. 4, 612 (1992)CrossRefGoogle Scholar
  5. 5.
    Gleiter, H.: Nanostructured Materials. Adv. Mater. 4, 474 (1992)CrossRefGoogle Scholar
  6. 6.
    Zhou, Z.H., Xue, J.M., Wang, J., Chan, H.S. O., Yu, T., Shen, Z.X.J.: NiFe2O4 nanoparticles formed in situ in silica matrix by mechanical activation. Appl. Phys. 91, 6015 (2002)CrossRefGoogle Scholar
  7. 7.
    Heiba, Z.K., Mohamed, M.B., Arda, L., Dogan, N.: Cation distribution correlated with magnetic properties of nanocrystalline gadolinium substituted nickel ferrite. J. Magn. Magn. Mater. 391, 195–202 (2015)CrossRefADSGoogle Scholar
  8. 8.
    Heiba, Z.K., Mohamed, M.B., Wahba, A.M., Arda, L.: Magnetic and structural properties of nanocrystalline cobalt-substituted magnesium–manganese ferrite. J. Supercond. Nov. Magn. 28, 2517–2524 (2015)CrossRefGoogle Scholar
  9. 9.
    Dogan, N., Bingolbali, A., Arda, L., Akcan, D.: Synthesis, structure, and magnetic properties of Ni1−xZnxFe2O4 Nanoparticles. doi: 10.1007/s10948-016-3899-y
  10. 10.
    Shinde, S.S., Jadhav, K.M.: Electrical and dielectric properties of silicon substituted cobalt ferrites. Mater. Lett. 37, 63–67 (1998)CrossRefGoogle Scholar
  11. 11.
    Sawataky, G.A., Van Der Woude, F., Morrish, A.H.: Cation distributions in octahedral and tetrahedral sites of the ferrimagnetic spinel CoFe2O4. J. Appl. Phys. 39, 1204 (1968)CrossRefADSGoogle Scholar
  12. 12.
    Rondinone, A.J., Samia, A.C.S., Zhang, Z.J.: Characterizing the magnetic anisotropy constant of spinel cobalt ferrite nanoparticles. Appl. Phys. Lett. 76, 3624–3626 (2000)CrossRefADSGoogle Scholar
  13. 13.
    Pallai, V., Shah, D.O.: Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions. J. Magn. Magn. Mater. 163, 243–248 (1996)CrossRefADSGoogle Scholar
  14. 14.
    Skomski, R.: Nanomagnetics. J. Phys. Condens. Matter. 15, R841–934 (2003)CrossRefADSGoogle Scholar
  15. 15.
    Ramankutty, C.G., Sugunan, S.: Surface properties and catalytic activity of ferrospinels of nickel, cobalt and copper, prepared by soft chemical methods. Appl. Catal. A 218, 39–51 (2001)CrossRefGoogle Scholar
  16. 16.
    Reddy, C.V.G., Manorama, S.V., Rao, V.J.: Semiconducting gas sensor for chlorine based on inverse spinel nickel ferrite. Sens. Actuators B: Chemical 55, 90–95 (1999)CrossRefGoogle Scholar
  17. 17.
    Candlish, I.E., Kear, B.H., Kim, B.K.: Processing and properties of nanostructured WC-Co. Nanostuct. Mater. 1, 119–124 (1992)CrossRefGoogle Scholar
  18. 18.
    Skandan, G., Hahn, H., Roddy, M., Cannon, W.R.: Ultrafine-grained dense monoclinic and tetragonal zirconia. J. Am. Ceram. Soc. 77, 1706–1710 (1994)CrossRefGoogle Scholar
  19. 19.
    Kishimoto, M., Sakurai, Y., Ajima, T.: Magneto-optical properties of Ba-ferrite particulate media. J. Appl. Phys. 76, 7506–7509 (1994)CrossRefADSGoogle Scholar
  20. 20.
    Li, F., Liu, J.J., Evans, D.G., Duan, X.: Stoichiometric synthesis of pure MFe2O4 (M = Mg, Co, and Ni) spinel ferrites from tailored layered double hydroxide (hydrotalcite-like) precursors. Chem. Mater. 16, 1597–1602 (2004)CrossRefGoogle Scholar
  21. 21.
    Goya, G.F., Rechenberg, H.R.: Ionic disorder and Néel temperature in ZnFe2O4 nanoparticles. J. Magn. Magn. Mater. 196, 191–192 (1999)CrossRefADSGoogle Scholar
  22. 22.
    Kasapoglu, N., Birsoz, B., Baykal, A., Koseoglu, Y., Toprak, M.S.: Synthesis and magnetic properties of octahedral ferrite Ni χ Co1– χ Fe2O4 nanocrystals. Cent. Eur. J. Chem. 5, 570–580 (2007)Google Scholar
  23. 23.
    Baykal, A., Kasapoglu, N., Koseoglu, Y., Toprak, M.S., Bayrakdar, H.: CTAB-assisted hydrothermal synthesis of NiFe2O4 and its magnetic characterization. J. Alloys Compounds 464, 514–518 (2008)CrossRefGoogle Scholar
  24. 24.
    Lutterotti, L.: Maud 2.33, http://www.ing.unitn.it/~maud/
  25. 25.
    El Sayed, A.M.: Ceram. Int. 28, 363–367 (2002)CrossRefGoogle Scholar
  26. 26.
    Sheikh, A.D., Mathe, V.L.: Anomalous electrical properties of nanocrystalline Ni–Zn ferrite. J. Mater. Sci. 43, 2018 (2008)CrossRefADSGoogle Scholar
  27. 27.
    Koseoglu, Y., Yildiz, H., Yılgın, R.: Synthesis, characterization and superparamagnetic resonance studies of znfe2 o 4 nanoparticles. J. Nanosci. Nanotechnol. 12, 2261–2269 (2012)CrossRefGoogle Scholar
  28. 28.
    Nathani, H., Misra, R.D.K.: Surface effects on the magnetic behavior of nanocrystalline nickel ferrites and nickel ferrite-polymer nanocomposites. Mater. Sci. Eng. 113, 228 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Faculty of Engineering and Naturel Sciences, Department of Mechatronic EngineeringBahcesehir UniversityIstanbulTurkey
  2. 2.Faculty of Science, Department of PhysicsGebze Technical UniversityGebzeTurkey
  3. 3.Faculty of Technology, Department of Mechanical EngineeringMarmara UniversityIstanbulTurkey

Personalised recommendations