Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 1, pp 189–196 | Cite as

First-Principles Investigation of Equiatomic Quaternary Heusler Alloys NbVMnAl and NbFeCrAl and a Discussion of the Generalized Electron-Filling Rule

  • L. Zhang
  • Z. X. ChengEmail author
  • X. T. WangEmail author
  • R. Khenata
  • H. Rozale
Original Paper


Plane-wave pseudo-potential methods based on density functional theory are used to study the electronic structures, magnetic, and half-metallic properties of the equiatomic quaternary Heusler alloys NbVMnAl and NbFeCrAl. Calculated results reveal that NbVMnAl and NbFeCrAl alloys are newly designed half-metallic ferrimagnets with a total magnetic moment (M t ) of 2 μ B. We found that the Slater-Pauling rule, i.e., the relationship between the M t and the total number of valence electrons (Z t ) of these two alloys was different. For NbVMnAl alloy, it obeys the M t = |Z t − 18| rule. For NbFeCrAl, it satisfies the M t = |Z t − 24| rule. Also, we observed that the half-metallic band gap (HM-BG) of these two alloys was different. Namely, for one material (NbFeCrAl), it is located in the spin-up channel, and in the other (NbVMnAl), it is located in the spin-down channel. To explain these phenomena, in this work, the generalized electron-filling rule was investigated, and the origin of the HM-BG of NbVMnAl and NbFeCrAl was studied. We hope that our work may provide theoretical guidance in searching for Nb-based equiatomic quaternary Heusler half-metals in the future.


Heusler compounds Half-metallic band-gap Slater-Pauling rule Band structure Magnetic properties 



Many thanks are owed to Dr. Tania Silver for critical reading of the manuscript. Zhenxiang Cheng thanks the Australian Research Council for support.


  1. 1.
    Wolf, S.A., et al.: Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Pickett, W.E., Moodera, J.S.: Half metallic magnets. Phys. Today 54, 39–44 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    De Groot, R.A., et al.: New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024 (1983)ADSCrossRefGoogle Scholar
  4. 4.
    Skaftouros, S., et al.: Generalized Slater-Pauling rule for the inverse Heusler compounds. Phys. Rev. B 87, 024420 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    Galanakis, I., Mavropoulos, Ph., Dederichs, Ph. H.: Electronic structure and Slater–Pauling behaviour in half-metallic Heusler alloys calculated from first principles. J. Phys. D Appl. Phys. 39, 765 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Zhang, X.M., et al.: First-principle study for full-Heusler compounds V2YAl (Y = V, Cr, Mn, Fe, Co, Ni) and a discussion to Slater-Pauling rule. Comput. Mater. Sci. 59, 1–5 (2012)CrossRefGoogle Scholar
  7. 7.
    Özdoğan, K., Şaşıoğlu, E., Galanakis, I.: Slater-Pauling behavior in LiMgPdSn-type multifunctional quaternary Heusler materials: half-metallicity, spin-gapless and magnetic semiconductors. J. Appl. Phys. 113, 193903 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Wang, Xiaotian, et al.: Recent advances in the Heusler based spin-gapless semiconductors. J. Mater. Chem. C 4, 7176–7192 (2016)CrossRefGoogle Scholar
  9. 9.
    Elahmar, M.H., et al.: Structural, mechanical, electronic and magnetic properties of a new series of quaternary Heusler alloys CoFeMnZ (Z = Si, As, Sb): a first-principle study. J. Magn. Magn. Mater. 393, 165–174 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Klaer, P., et al.: Element-specific magnetic moments and spin-resolved density of states in CoFeMnZ (Z = Al, Ga; Si, Ge). Phys. Rev. B 84, 144413 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Alijani, V., et al.: Electronic, structural, and magnetic properties of the half-metallic ferromagnetic quaternary Heusler compounds CoFeMnZ (Z = Al, Ga, Si, Ge). Phys. Rev. B 84, 224416 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Gao, G.Y., et al.: Large half-metallic gaps in the quaternary Heusler alloys CoFeCrZ (Z = Al, Si, Ga, Ge): A first-principles study. J. Alloys Compd. 551, 539–543 (2013)CrossRefGoogle Scholar
  13. 13.
    Choudhary, R., et al.: Structural disorder and magnetism in the spin-gapless semiconductor CoFeCrAl. AIP Adv. 6, 056304 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Kim, D.-C., Lee, J.I.: Half-metallicity and magnetism at the (001) surfaces of the quaternary heusler alloys CoFeCrZ (Z = Ga, Ge): a first-principles study. J. Korean Magn. Soc. 25, 31–38 (2015)CrossRefGoogle Scholar
  15. 15.
    Enamullah, Y.V., et al.: Electronic structure, magnetism and antisite disorder in CoFeCrGe and CoMnCrAl alloys. Phys. Rev. B 92, 224413 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Halder, M., et al.: Electronic, structural, and magnetic properties of the quaternary Heusler alloy NiCoMnZ (Z = Al, Ge, and Sn). J. Magn. Magn. Mater. 377, 220–225 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Alijani, V., et al.: Quaternary half-metallic Heusler ferromagnets for spintronics applications. Phys. Rev. B 83, 184428 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Xiong, L., Lin, Y., Gao, G. Y.: Search for half-metallic magnets with large half-metallic gaps in the quaternary Heusler alloys CoFeTiZ and CoFeVZ (Z = Al, Ga, Si, Ge, As, Sb). J. Magn. Magn. Mater. 360, 98–103 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Zhang, Y.J., et al.: Magnetism, band gap and stability of half-metallic property for the quaternary Heusler alloys CoFeTiZ (Z = Si, Ge, Sn). J. Alloys Compd. 616, 449–453 (2014)CrossRefGoogle Scholar
  20. 20.
    Karimian, N., Ahmadian, F.: Electronic structure and half-metallicity of new quaternary Heusler alloys NiFeTiZ (Z = Si, P, Ge, and As). Solid State Commun. 223, 60–66 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Gao, Qiang, et al.: A first-principle study on the properties of a new series of quaternary Heusler alloys CoFeScZ (Z = P, As, Sb). J. Magn. Magn. Mater. 379, 288–293 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Khodami, M., Ahmadian, F.: First-principles study of magnetism and half-metallic properties for the quaternary Heusler alloys CoMnTiZ (Z = P, As, and Sb). J. Supercond. Nov. Magn. 28, 3027–3035 (2015)CrossRefGoogle Scholar
  23. 23.
    Gökoğlu, G.: Ab initio electronic structure of NiCoCrGa half-metallic quaternary Heusler compound. Solid State Sci. 14, 1273–1276 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Singh, M., et al.: Electronic structure, magnetism and robust half-metallicity of new quaternary Heusler alloy FeCrMnSb. J. Alloys Compd. 580, 201–204 (2013)CrossRefGoogle Scholar
  25. 25.
    Berri, S., et al.: Robust half-metallic ferromagnet of quaternary Heusler compounds ZrCoTiZ (Z = Si, Ge, Ga and Al). Comput. Condens. Matter 1, 26–31 (2014)CrossRefGoogle Scholar
  26. 26.
    Berri, S., et al.: First principles study of structural, electronic and magnetic properties of ZrFeTiAl, ZrFeTiSi, ZrFeTiGe and ZrNiTiAl. J. Magn. Magn. Mater. 371, 106–111 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    Xie, H.-H., et al.: First-principles study of four quaternary Heusler alloys zrmnVZ and ZrCoFeZ (Z = Si, Ge). Comput. Mater. Sci. 103, 52–55 (2015)CrossRefGoogle Scholar
  28. 28.
    Wang, Xiaotian, et al.: Origin of the half-metallic band-gap in newly designed quaternary Heusler compounds zrVTiz (Z = Al, Ga). RSC Adv. 6, 57041–57047 (2016)CrossRefGoogle Scholar
  29. 29.
    Guo, R., et al.: First-principles study on quaternary Heusler compounds ZrFeVZ (Z = Al, Ga, In) with large spin-flip gap. RSC Adv. 6, 109394–109400 (2016)CrossRefGoogle Scholar
  30. 30.
    Benkabou, M., et al.: Electronic structure and magnetic properties of quaternary Heusler alloys CoRhMnZ (Z = Al, Ga, Ge and Si) via first-principle calculations. J. Alloys Compd. 647, 276–286 (2015)CrossRefGoogle Scholar
  31. 31.
    Rahmoune, M., et al.: The effect of pressure and alloying on half-metallicity of quaternary Heusler compounds comnYZ (Z = Al, Ga, and In). Mater. Sci. Pol. 34, 905–915 (2016)CrossRefGoogle Scholar
  32. 32.
    Benkaddour, K., et al.: First-principles study of structural, elastic, thermodynamic, electronic and magnetic properties for the quaternary Heusler alloys CoRuFeZ (Z = Si, Ge, Sn). J. Alloys Compd. 687, 211–220 (2016)CrossRefGoogle Scholar
  33. 33.
    Bahramian, S., Ahmadian, F.: Half-metallicity and magnetism of quaternary Heusler compounds CoRuTiZ (Z = Si, Ge, and Sn). J. Magn. Magn. Mater. 424, 122–129 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    Rasool, M.N., et al.: Structural stability, electronic and magnetic behaviour of spin-polarized YCoVZ (Z = Si, Ge) and YCotiz (Z = Si, Ge) Heusler alloys. Mater. Chem. Phys. 183, 524–533 (2016)CrossRefGoogle Scholar
  35. 35.
    Bainsla, L., et al.: CoRuFeX (X = Si and Ge) Heusler alloys: high TC materials for spintronic applications. J. Alloys Compd. 651, 631–635 (2015)CrossRefGoogle Scholar
  36. 36.
    Bainsla, L., Suresh, K.G.: Equiatomic quaternary Heusler alloys: a material perspective for spintronic applications. Appl. Phys. Rev. 3, 031101 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    Feng, Y., et al.: The effect of disorder on electronic and magnetic properties of quaternary Heusler alloy CoFeMnSi with LiMgPbSb-type structure. J. Magn. Magn. Mater. 378, 7–15 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    Payne, M.C., et al.: Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045 (1992)ADSCrossRefGoogle Scholar
  39. 39.
    Segall, M.D., et al.: First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 14, 2717 (2002)ADSGoogle Scholar
  40. 40.
    Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue forMalism. Phys. Rev. B 41, 7892 (1990)ADSCrossRefGoogle Scholar
  41. 41.
    Perdew, J.P., et al.: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671 (1992)ADSCrossRefGoogle Scholar
  42. 42.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  43. 43.
    Feng, Y., et al.: Structural stability, half-metallicity and magnetism of the CoFeMnSi/GaAs (001) interface. Appl. Surf. Sci. 346, 1–10 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    Li, Y., et al.: High-performance giant-magnetoresistance junction with B2-disordered Heusler alloy based Co2MnAl/Ag/Co2MnAl trilayer. J. Appl. Phys. 118, 053902 (2015)ADSCrossRefGoogle Scholar
  45. 45.
    Zhang, X.M., et al.: Phase stability, magnetism and generalized electron-filling rule of vanadium-based inverse Heusler compounds. EPL (Europhys. Lett.) 104, 27012 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    Wurmehl, S., et al.: Valence electron rules for prediction of half-metallic compensated-ferrimagnetic behaviour of Heusler compounds with complete spin polarization. J. Phys.: Condens. Matter 18, 6171 (2006)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of PhysicsTonghua Normal UniversityTonghuaPeople’s Republic of China
  2. 2.Institute for Superconducting and Electronic Materials (ISEM)University of WollongongWollongongAustralia
  3. 3.Laboratoire de Physique Quantique, de la Matière et de la Modélisation Mathématique (LPQ3M)Université de MascaraMascaraAlgeria
  4. 4.Condensed Matter and Sustainable Development Laboratory, Physics DepartmentUniversity of Sidi-Bel-AbbèsSidi-Bel-AbbèsAlgeria

Personalised recommendations