Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 30, Issue 10, pp 2855–2864 | Cite as

First-Principle Study of Electronic and Half-Metallic Ferromagnetic Properties of Vanadium (V)-Doped Cubic BP and InP

  • Miloud Boutaleb
  • Bendouma Doumi
  • Allel Mokaddem
  • Adlane Sayede
  • Abdelkader Tadjer
Original Paper

Abstract

In this study, we use the first-principle calculations of density functional theory with gradient generalized approximation of Wu–Cohen to investigate the doping effect of vanadium impurity on structural, electronic and magnetic properties of In1−x V x P and B1−x V x P alloys at various concentrations x = 0.0625, 0.125 and 0.25. Owing to the metallic nature of majority spin and semiconducting minority spin, the In1−x V x P compounds exhibit a half-metallic character with total magnetic moments of 2 μ B, while the B1−x V x P has metallic nature for all concentrations. The results of exchange parameters revealed that exchange coupling between vanadium atoms and the conduction band is ferromagnetic, confirming the magnetic feature of In1−x V x P and B1−x V x P. From our findings, we have predicted that the In1−x V x P alloys seem to be potential materials for spintronics.

Keywords

Electronic structures p-d exchange coupling Half-metallic ferromagnetism 

References

  1. 1.
    Sze, S.M., Kwok, K.Ng.: Physics of semiconductor devices, 3rd Edition. Wiley (2007)Google Scholar
  2. 2.
    Oktyabrsky, S., Peide, D.Ye.: Fundamentals of III-V semiconductor MOSFETs. Springer (2010)Google Scholar
  3. 3.
    Furdyna, J.K.: J. Appl. Phys. 64, R29 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., Von Molnar, S., Roukes, M.L., Chtchelk-anova, A.Y., Treger, D.M.: Science 294, 1488 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    Kittel, C.: Introduction to solid state physics, 8th edition, Wiley (2005)Google Scholar
  6. 6.
    Cohen, M.L., Chelikowsky, J.R.: Electronic structure and optical properties of semiconductors. Springer (1988)Google Scholar
  7. 7.
    Becquerel, E.: Compt. Rendus 9, 561 (1839)Google Scholar
  8. 8.
    Hertz, H.: Ann. Phys. 267, 983 (1887)CrossRefGoogle Scholar
  9. 9.
    Hayashi, T., Tanaka, M., Seto, K., Nishinaga, T., Ando, K.: Appl. Phys. Lett. 71, 1825 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    Ohno, H.: Science 281, 951 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D.: Science 287, 1019–22 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    Matsuda, A., Akiba, S.: Thin Solid Films 516, 3873.3705–4366 (2008)CrossRefGoogle Scholar
  13. 13.
    Miah, M.I., Gray, E.M.: Solid. State. Sci. 10, 205 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Pei, G.Q., Xia, C.T., Dong, Y.J., Wu, B., Wang, T., Xu, J.: Scr. Mater. 58, 943 (2008)CrossRefGoogle Scholar
  15. 15.
    Munekata, H., Ohno, H., von Molnar, S., Segmiiller, A., Chang, L.L., Esaki, L.: Phys. Rev. Lett. 63, 1849 (1989)ADSCrossRefGoogle Scholar
  16. 16.
    Munekata, H., Ohno, H., von Molnar, S., Harwit, A., Segmtiller, A., Chang, L.L.: J. Vat. Sci. Tech. B 8, 176 (1990)CrossRefGoogle Scholar
  17. 17.
    Von Molnar, S., Munekata, H., Ohno, H., Chang, L.L.: European MRS Meeting, Strassbourg (1990)Google Scholar
  18. 18.
    Ohno, H., Munekata, H., Penney, T., Von Molnar, S., Chang, L.L.: Phys. Rev. Lett. 68, 2664 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    Ohno, H., Shen, A., Matsukura, F., Oiwa, A., Endo, A., Katsumoto, S., Iye, Y.: Appl. Phys. Lett. 69, 363 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    Koshihara, S., Oiwa, A., Hirasawa, M., Katsumoto, S., Iye, Y., Urano, C., Takagi, H., Munekata, H.: Phys. Rev. Lett. 78, 4617 (1997)ADSCrossRefGoogle Scholar
  21. 21.
    Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D.: Science 287, 1019 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    Sajjad, M., Alay-e-Abbas, S.M., Zhang, H.X., Noor, N.A., Saeed, Y., Shakir, I., Shaukatet, A.: J. Magn. Magn. Mater. 390, 78–86 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Kervan, S., Kervan, N.: J. Magn. Magn. Mater 382, 63–70 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    Boutaleb, M., Doumi, B., Tadjer, A., Sayede, A.: J. Magn. Magn. Mater 397, 132–138 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Boutaleb, M., Doumi, B., Sayede, A., Tadjer, A., Mokaddem, A.: J. Supercond. Nov. Magn. 28, 143–150 (2015)CrossRefGoogle Scholar
  26. 26.
    Liang, P., Yang, L., Hu, X., Wang, L., Dong, Q., Jing, X.: J. Magn. Magn. Mater. 355, 295–299 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    Merabet, M., Rached, D., Benalia, S., Reshak, A.H., Bettahar, N., Righi, H., Baltache, H., Soyalp, F., Labair, M.: Superlattice. Microst. 65, 195–205 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    Boutaleb, M., Tadjer, A., Doumi, B., Djedid, A., Yakoubi, A., Dahmane, F., Abbar, B.: J. Supercond. Nov. Magn. 27, 1603 (2014)CrossRefGoogle Scholar
  29. 29.
    Dahmane, F., Tadjer, A., Doumi, B., Mesri, D., Aourag, H., Sayede, A.: Mater. Sci. Semicond. Proc. 21, 66–73 (2014)CrossRefGoogle Scholar
  30. 30.
    Doumi, B., Mokaddem, A., Sayede, A., Boutaleb, M., Tadjer, A., Dahmane, F.: J. Supercond. Nov. Magn. 28(10), 3163–3172 (2015)CrossRefGoogle Scholar
  31. 31.
    Cherfi, Y., Mokaddem, A., Bensaid, D., Doumi, B., Sayede, A., Dahmane, F.: J. Supercond. Nov. Magn. 29, 1813–1817 (2016)CrossRefGoogle Scholar
  32. 32.
    Zhang, Y.: J. Magn. Magn. Mater. 342, 35–37 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Yao, G., Fan, G., Xing, H., Zheng, S., Ma, J., Zhang, Y., He, L.: J. Magn. Magn. Mater. 331, 117–121 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    Sharma, V., Manchanda, P., Sahota, P.K., Skomski, R., Kashyap, A.: J. Magn. Magn. Mater. 324, 786–791 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Souissi, M., Schmerber, G., Derory, A., El Jani, B.: J. Magn. Magn. Mater. 324, 2539–2542 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    Wang, S.Q., Ye, H.Q.: Phys. Rev. B 66, 235111 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    Gorodynskyy, V., Zdansky, K., Pekarek, L., Malina, V., Vackova, S.: Nucl. Instr. Meth. A 555, 288 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    Bouarissa, N.: Phys. B: Condens. Matter 406, 13.2583–2587 (2013)Google Scholar
  39. 39.
    Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D.: Science 287, 1019 (2000)ADSCrossRefGoogle Scholar
  40. 40.
    Schmidt, T.M., Venezuela, P., Arantes, J.T., Fazzio, A.: Phys. Rev. B 73, 235330 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    Hollingsworth, J., Bandaru, P.R.: Mater. Sci. Eng. B 151, 152 (2008)CrossRefGoogle Scholar
  42. 42.
    Udagawa, T.: Brevet US6809346, Boron phosphide-based semiconductor light-emitting device (2004)Google Scholar
  43. 43.
    Kumashiro, Y., Mitsuhashi, T., Okaya, S., Muta, F., Koshiro, T., Takahashi, Y., Mirabayashi, M.: Thermal conductivity of a boron phosphide single-crystal wafer up to high temperature. J. Appl. Phys. 65, 2147 (1989)ADSCrossRefGoogle Scholar
  44. 44.
    Hohenberg, P., Kohn, W.: Phys. Rev. B 136, 864 (1964)ADSCrossRefGoogle Scholar
  45. 45.
    Kohn, W., Sham, L.J.: Phys. Rev. A 140, 1133 (1965)ADSCrossRefGoogle Scholar
  46. 46.
    Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2k, An augmented plane wave plus local orbitals program for calculating crystal properties. Vienna University of Technology, Vienna (2001)Google Scholar
  47. 47.
    Wu, Z., Cohen, R.E.: Phys. Rev. B 73, 235116 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    Monkhorst, H.J., Pack, J.D.: Phys. Rev. B 13, 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    Pack, J.D., Monkhorst, H.J.: Phys. Rev. B 16, 1748 (1977)ADSCrossRefGoogle Scholar
  50. 50.
    Muranghan, F.D.: Proc. Natl. Acad. Sci. USA 30, 244 (1944)ADSCrossRefGoogle Scholar
  51. 51.
    Tran, F., Laskowski, R., Blaha, P., Schwarz, K.: Phys. Rev. B 75, 115131 (2007)ADSCrossRefGoogle Scholar
  52. 52.
    Heyd, J., Peralta, J.E., Scuseria, G.E., Martin, R.L.: J. Chem. Phys. 123, 174101 (2005)ADSCrossRefGoogle Scholar
  53. 53.
    Wyckoff, R.W.G.: Crystal structures, 2nd edn. Krieger, Malabar (1986)MATHGoogle Scholar
  54. 54.
    Liu, B.G.: Phys. Rev. B 67, 172411 (2000)ADSCrossRefGoogle Scholar
  55. 55.
    Xu, Y.Q., Liu, B.G., Pettifor, D.G.: Phys. Rev. B 66, 184435 (2002)ADSCrossRefGoogle Scholar
  56. 56.
    Yao, K.L., Gao, G.Y., Liu, Z.L., Zhu, L.: Solid State Commun. 133, 301 (2005)ADSCrossRefGoogle Scholar
  57. 57.
    Gao, G.Y., Yao, K.L., Sasioglu, E., Sandratskii, L.M., Liu, Z.L., Jiang, J.L.: Phys. Rev. B 75, 174442 (2007)ADSCrossRefGoogle Scholar
  58. 58.
    Akai, H.: Phys. Rev. Lett. 81, 3002 (1998)ADSCrossRefGoogle Scholar
  59. 59.
    Sato, K., Katayama-Yoshida, H.: Semicond. Sci. Technol. 17, 367–376 (2002)ADSCrossRefGoogle Scholar
  60. 60.
    Zumdahl Steven, S.: Chemical principles. 5th Edition. Chapter 13.2, Electronegativity pp. 587–590. Houghton Mifflin Company (2005)Google Scholar
  61. 61.
    Housecroft Catherine, E.: Inorganic Chemistry. 3rd Edition. Chapter 2.5, Electronegativity Values. pp. 42–44 Pearson Education Limited (2008)Google Scholar
  62. 62.
    Allred, A.L., Rochow, E.G.: J. Inorg. Nucl. Chem. 5, 264 (1958)CrossRefGoogle Scholar
  63. 63.
    Leroy, G.W.: Organic chemistry, 7th edn. Pearson Education, Harlow (2006)Google Scholar
  64. 64.
    Raebiger, H., Ayuela, A., Nieminen, R.M.: J. Phys. Condens. Matter 16, L457 (2004)ADSCrossRefGoogle Scholar
  65. 65.
    Sanvito, S., Ordejon, P., Hill, N.A.: Phys. Rev. B 63, 165206 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Miloud Boutaleb
    • 1
    • 2
  • Bendouma Doumi
    • 2
  • Allel Mokaddem
    • 3
  • Adlane Sayede
    • 4
  • Abdelkader Tadjer
    • 1
  1. 1.Modelling and Simulation in Materials Science Laboratory, Physics DepartmentDjillali Liabes University of Sidi Bel-AbbesSidi Bel-AbbesAlgeria
  2. 2.Faculty of SciencesDr. Tahar Moulay University of SaidaSaidaAlgeria
  3. 3.Centre Universitaire Nour Bachir El BayadhEl BayadhAlgérie
  4. 4.Unité de Catalyse et Chimie du Solide (UCCS)UMR CNRS 8181, Faculté des Sciences, Université d’ArtoisLensFrance

Personalised recommendations