Journal of Superconductivity and Novel Magnetism

, Volume 30, Issue 10, pp 2791–2796 | Cite as

Temperature and Magnetic Field-Induced Spin Reorientation in Rare-Earth Perovskite ErFe0.75Cr0.25O3

  • Maolin Xiang
  • Yiming Cao
  • Weiyao Zhao
  • Baojuan Kang
  • Zhenjie Feng
  • Poorva Sharma
  • Jincang Zhang
  • Wei Ren
  • Shixun Cao
Original Paper


We report the synthesis of a single-phase rare-earth perovskite ErFe0.75Cr0.25O3 polycrystalline and its magnetic properties. A transition occurs at temperature T N = 120 K below which we observe a weak magnetic moment from the canted antiferromagnetism. Interestingly, ErFe0.75Cr0.25O3 reveals the compensation-like behavior at T comp−like = 27 K, where the net magnetic moments of transition-metal ions are antiparallel and equal to the induced net moment of Er3+ ions, and the paramagnetic contribution of Er3+ moment presenting a nonzero magnetization. The temperature-dependent magnetization measurement shows a spin reorientation transition from Γ4 to Γ1 at 6 K. Furthermore, it is also observed that there is a spin-flop transition at low temperature induced by external magnetic field in Γ1 state (antiferromagnetic state). The interaction between (Fe/Cr)-3d and Er-4f electrons drives an extremely interesting spin reorientation transition which is highly sensitive to magnetic field and temperature.


Spin reorientation Rare-earth perovskite Spin-flop transition Compensation-like behavior 



This work is supported by the National Natural Science Foundation of China (NSFC, Nos. 51372149, 51672171, and 11574194), the National Key Basic Research Program of China (Grant No. 2015CB921600), Eastern Scholar Program from Shanghai Municipal Education Commission, and the Science and Technology Commission of Shanghai Municipality (No. 16DZ2260600).


  1. 1.
    Cao, S., Zhao, H., Kang, B., Zhang, J., Ren, W.: Temperature induced spin switching in SmFeO3 single crystal. Sci. Rep. 4, 5960 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    de Jong, J.A., Kimel, A.V., Pisarev, R.V., Kirilyuk, A., Rasing, T.: Laser-induced ultrafast spin dynamics in ErFeO3. Phys. Rev. B 84, 104421 (2011)Google Scholar
  3. 3.
    Kimel, A.V., Kirilyuk, A., Tsvetkov, A., Pisarev, R.V., Rasing, T.: Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3. Nature 429, 850–853 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Wu, H., Cao, S., Liu, M., Cao, Y., Kang, B., Zhang, J., Ren, W.: Twofold spin reorientation and field-induced incomplete phase transition in single-crystal Dy0.5Pr0.5FeO3. Phys. Rev. B 90, 144415 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Zhao, W., Cao, S., Huang, R., Cao, Y., Xu, K., Kang, B., Zhang, J., Ren, W.: Spin reorientation transition in dysprosium-samarium orthoferrite single crystals. Phys. Rev. B 91, 104425 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    Horner, H., Varma, C.M.: Nature of spin-reorientation transitions. Phys. Rev. Lett. 20, 845–846 (1968)ADSCrossRefGoogle Scholar
  7. 7.
    Konstantin, P.B., Anatolii, K.Z., Antonina, M.K., Levitin, R.Z.: Spin-reorientation transitions in rare-earth magnets. Sov. Phys. Usp. 19, 574–596 (1976)CrossRefGoogle Scholar
  8. 8.
    Kimel, A.V., Kirilyuk, A., Usachev, P.A., Pisarev, R.V., Balbashov, A.M., Rasing, T.: Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655–657 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Cao, Y., Xiang, M., Zhao, W., Wang, G., Feng, Z., Kang, B., Stroppa, A., Zhang, J., Ren, W., Cao, S.: Magnetic phase transition and giant anisotropic magnetic entropy change in TbFeO3 single crystal. J. Appl. Phys. 119, 063904 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    Huang, R., Cao, S., Ren, W., Zhan, S., Kang, B., Zhang, J.: Large rotating field entropy change in ErFeO3 single crystal with angular distribution contribution. Appl. Phys. Lett. 103, 162412 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Shao, M., Cao, S., Wang, Y., Yuan, S., Kang, B., Zhang, J.: Large magnetocaloric effect in HoFeO3 single crystal. Solid State Commun. 152, 947–950 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Shao, M., Cao, S., Yuan, S., Shang, J., Kang, B., Lu, B., Zhang, J.: Large magnetocaloric effect induced by intrinsic structural transition in Dy1−xHoxMnO3. Appl. Phys. Lett. 100, 222404 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Hu, S., Chen, L., Wu, Y., Yu, L., Zhao, X., Cao, S., Zhang, J., Ren, W.: Selected multiferroic perovskite oxides containing rare earth and transition metal elements. Chin. Sci. Bull. 59, 5170–5179 (2014)CrossRefGoogle Scholar
  14. 14.
    Tokunaga, Y., Furukawa, N., Sakai, H., Taguchi, Y., Arima, T.-h., Tokura, Y.: Composite domain walls in a multiferroic perovskite ferrite. Nat. Mater. 8, 558–562 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Tokunaga, Y., Iguchi, S., Arima, T., Tokura, Y.: Magnetic-field-induced ferroelectric state in DyFeO3. Phys. Rev. Lett. 101, 097205 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Tokunaga, Y., Taguchi, Y., Arima, T., Tokura, Y.: Magnetic biasing of a ferroelectric hysteresis loop in a multiferroic orthoferrite. Phys. Rev. Lett. 112, 037203 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    White, R.L.: Review of recent work on the magnetic and spectroscopic properties of the rare-earth orthoferrites. J. Appl. Phys. 40, 1061 (1969)ADSCrossRefGoogle Scholar
  18. 18.
    Johnson, C.E., Prelorendjo, L.A., Thomas, M.F.: Field induced spin reorientation in orthoferrites DyFeO3, HoFeO3 and ErFeO3. J. Magn. Magn. Mater. 15, 557–558 (1980)ADSCrossRefGoogle Scholar
  19. 19.
    Prelorendjo, L.A., Johnson, C.E., Thomas, M.F., Wanklyn, B.M.: Spin reorientation transitions in DyFeO3 induced by magnetic fields. J. Phys. C 13, 2567–2578 (1980)ADSCrossRefGoogle Scholar
  20. 20.
    Preethi Meher, K.R.S., Wahl, A., Maignan, A., Martin, C., Lebedev, O.I.: Observation of electric polarization reversal and magnetodielectric effect in orthochromites: a comparison between LuCrO3 and ErCrO3. Phys. Rev. B 89, 144401 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Rajeswaran, B., Khomskii, D.I., Zvezdin, A.K., Rao, C.N.R., Sundaresan, A.: Field-induced polar order at the Néel temperature of chromium in rare-earth orthochromites: interplay of rare-earth and Cr magnetism. Phys. Rev. B 86, 214409 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Serrao, C.R., Kundu, A.K., Krupanidhi, S.B., Waghmare, U.V., Rao, C.N.R.: Biferroic YCrO3. Phys. Rev. B 72, 220101 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    Mao, J., Sui, Y., Zhang, X., Su, Y., Wang, X., Liu, Z., Wang, Y., Zhu, R., Wang, Y., Liu, W., Tang, J.: Temperature- and magnetic-field-induced magnetization reversal in perovskite YFe0.5Cr0.5O3. Appl. Phys. Lett. 98, 192510 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    Rajeswaran, B., Mandal, P., Saha, R., Suard, E., Sundaresan, A., Rao, C.N.R.: Ferroelectricity induced by cations of nonequivalent spins disordered in the weakly ferromagnetic perovskites,YCr1−x M xO3 (M = Fe or Mn). Chem. Mater. 24, 3591–3595 (2012)CrossRefGoogle Scholar
  25. 25.
    Yin, L.H., Yang, J., Zhang, R.R., Dai, J.M., Song, W.H., Sun, Y.P.: Multiferroicity and magnetoelectric coupling enhanced large magnetocaloric effect in DyFe0.5Cr0.5O3. Appl. Phys. Lett. 104, 032904 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Momma, K., Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 44, 1272–1276 (2011)CrossRefGoogle Scholar
  27. 27.
    Rietveld, H.: Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Cryst. 22, 151–152 (1967)CrossRefGoogle Scholar
  28. 28.
    Rodríguez-Carvajal, J.: Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993)ADSCrossRefGoogle Scholar
  29. 29.
    Cui, X., Feng, Z., Jin, Y., Cao, Y., Deng, D., Chu, H., Cao, S., Dong, C., Zhang, J.: AutoFP: a GUI for highly automated Rietveld refinement using an expert system algorithm based on FullProf. J. Appl. Cryst. 48, 1581–1586 (2015)CrossRefGoogle Scholar
  30. 30.
    Prado-Gonjal, J., Schmidt, R., Ávila, D., Amador, U., Morán, E.: Structural and physical properties of microwave synthesized orthorhombic perovskite erbium chromite ErCrO3. J. Eur. Ceram. Soc. 32, 611–618 (2012)CrossRefGoogle Scholar
  31. 31.
    Cao, Y., Cao, S., Ren, W., Feng, Z., Yuan, S., Kang, B., Lu, B., Zhang, J.: Magnetization switching of rare earth orthochromite CeCrO3. Appl. Phys. Lett. 104, 232405 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    Bogdanov, A.N., Zhuravlev, A.V., Rößler, U.K.: Spin-flop transition in uniaxial antiferromagnets: magnetic phases, reorientation effects, and multidomain states. Phys. Rev. B 75, 094425 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of PhysicsShanghai UniversityShanghaiPeople’s Republic of China
  2. 2.International Center of Quantum and Molecular StructuresShanghai UniversityShanghaiPeople’s Republic of China
  3. 3.Materials Genome InstituteShanghai UniversityShanghaiPeople’s Republic of China
  4. 4.State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics, CASShanghaiChina
  5. 5.Shanghai Key Laboratory of High Temperature SuperconductorsShanghai UniversityShanghaiChina

Personalised recommendations