Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 30, Issue 10, pp 2805–2809 | Cite as

Magnetoelectric Effect in CoFe Alloy/Piezoelectric/CoFe Alloy Three-Layered Structures

  • K. Chichay
  • L. Fetisov
  • I. Baraban
  • V. Rodionova
Original Paper

Abstract

In this work, we investigated the characteristics of a direct magnetoelectric effect on three-layered multiferroic structure by method of harmonic field modulation. Multiferroic structures had the same piezoelectric layer—commercial PZT ceramics VIBRIT 1100 and different ferromagnetic layers—Ni and various kinds of commercial CoFe alloys. The largest value of magnetoelectric interaction was found for the sample where VACOFLUX48 was used as a ferromagnetic layer—10.25 V/(cm Oe) at resonance frequency of 206.36 kHz. This fact makes this structure very promising for development of high-sensitive sensors of alternating magnetic field and autonomous power sources.

Keywords

Multiferroics Magnetoelectrical effect Magnetostriction Composite structures 

Notes

Acknowledgments

The work was carried out with the financial support from the Ministry of Education and Science of the Russian Federation in the framework of government assignment (No.3.4168.2017/ПЧ) and from RFBR grant no.16-32-50095.

References

  1. 1.
    Nan, C.-W., Bichurin, M.I., Dong, S.X., Viehland, D., Srinivasan, G.: J. Appl. Phys. 103, 031101 (2008). doi: 10.1063/1.2836410 ADSCrossRefGoogle Scholar
  2. 2.
    Pyatakov, A., Zvezdin, A.: UFN 182, 593 (2012). doi: 10.3367/UFNr.0182.201206b.0593 CrossRefGoogle Scholar
  3. 3.
    Srinivasa, G., Rasmussen, E.T., Bush, A.A., Kamentsev, K.E., Meshcheryakov, V.F., Fetisov, Y.K.: Appl. Phys. A 78, 721 (2004). doi: 10.1007/s00339-002-1987-2 ADSCrossRefGoogle Scholar
  4. 4.
    Srinivasan, G., Rasmussen, E.T., Gallegos, J., Srinivasan, R., Bokhan, Y. u., Laletin, V.M.: Phys. Rev. B 64, 214408 (2001). doi: 10.1103/PhysRevB.64.214408 ADSCrossRefGoogle Scholar
  5. 5.
    Kim, S.S., Kang, T.S., Je, J.H.: Mater. Res. Soc. 15, 2881 (2000). doi: 10.1557/JMR.2000.0411 ADSCrossRefGoogle Scholar
  6. 6.
    Landau, L.D., Lifshits, E.M.: Electrodynamics of continuous media. Pergamon, Oxford (1960)Google Scholar
  7. 7.
    Dong, S., Zhai, J., Li, J.-F., Viehland, D.: Appl. Phys. Let. 89, 122903 (2006). doi: 10.1063/1.2404977 ADSCrossRefGoogle Scholar
  8. 8.
    Pan, D.A., Tian, J.J., Zhang, S.G., Sun, J.S., Volinsky, A.A., Qiao, L.J.: Mater. Sci. Eng. B 163, 114 (2009). doi: 10.1016/j.mseb.2009.05.017 CrossRefGoogle Scholar
  9. 9.
    Fiebig, M.: J. Phys. D: Appl. Phys. 38, R123 (2005). doi: 10.1088/0022-3727/38/8/R01 ADSCrossRefGoogle Scholar
  10. 10.
    Lou, J., Liu, M., Reed, D., Ren, Y., Sun, N.X.: Adv. Mater. 21, 4711 (2009). doi: 10.1002/adma.200901131 CrossRefGoogle Scholar
  11. 11.
    Guo, Y.-Y., Zhou, J.-P., Liu, P.: Curr. Appl. Phys. 10, 1092 (2010). doi: 10.1016/j.cap.2010.01.003 ADSCrossRefGoogle Scholar
  12. 12.
    Hung, D.S., Yao, Y.D., Wei, D.H., et al.: J. Appl. Phys. 103, 07E318 (2008). doi: 10.1063/1.2839345 CrossRefGoogle Scholar
  13. 13.
    Zeng, M., Or, W.S., Chan, H.L.W.: IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 57, 2147 (2010). doi: 10.1109/TUFFC.2010.1671 CrossRefGoogle Scholar
  14. 14.
    Hurner, E., Krykanov, I., Chashin, D., Fetisov, Y., Fetisov, L., Shamonin, M.: Int. J. Mat.s Res. 103, 1345 (2012). doi: 10.3139/146.110776 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • K. Chichay
    • 1
    • 2
  • L. Fetisov
    • 3
  • I. Baraban
    • 1
    • 2
  • V. Rodionova
    • 1
    • 2
  1. 1.Science and Technology Park “Fabrika”Immanuel Kant Baltic Federal UniversityKaliningradRussia
  2. 2.Center for Functionalized Magnetic MaterialsImmanuel Kant Baltic Federal UniversityKaliningradRussia
  3. 3.Moscow Technological University (MIREA)MoscowRussia

Personalised recommendations