Journal of Superconductivity and Novel Magnetism

, Volume 30, Issue 8, pp 2261–2270 | Cite as

Electronic Transport on W-Rich Films Deposited by Focused Ion Beam

  • Massimo Mongillo
  • Louis Jansen
  • Guillaume Audoit
  • Remy Berthier
  • David Cooper
Original Paper


The electrical transport properties of W films obtained through focused ion beam deposition reveal a transition from weakly insulating to metallic behavior for increasing film thickness. At low temperatures, all the films make a transition to the superconducting state. The observed stochastic distribution of the critical superconducting current is related to the occurrence of phase slip processes as documented by the statistical distribution of the depairing current and its temperature dependence according to the thermally activated model of the superconducting phase in a tilted washboard potential.


Focused ion beam Thermally activated superconducting phase slips Disordered superconductors 


  1. 1.
    Altshuler, B.L.: Temperature dependence of impurity conductivity of metals at low temperatures. Sov. Phys. JETP 48(4), 670–675 (1978). ADSGoogle Scholar
  2. 2.
    Astafiev, O.V., Ioffe, L.B., Kafanov, S., Pashkin, Y.A., Arutyunov, K.Y., Shahar, D., Cohen, O., Tsai, J.S.: Coherent quantum phase slip. Nature 484(7394), 355–8 (2012). doi: 10.1038/nature10930 ADSCrossRefGoogle Scholar
  3. 3.
    Bardeen, J.: Critical Fields and Currents in Superconductors. Rev. Mod. Phys. 34(4), 667–681 (1962). doi: 10.1103/RevModPhys.34.667 ADSCrossRefMATHGoogle Scholar
  4. 4.
    Bezryadin, A., Lau, C., Tinkham, M.: Quantum suppression of superconductivity in ultrathin nanowires. Nature 404(6781), 971–4 (2000). doi: 10.1038/35010060 ADSCrossRefGoogle Scholar
  5. 5.
    Blauner, P.G.: Focused ion beam induced deposition of low-resistivity gold films. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 7(6), 1816 (1989). doi: 10.1116/1.584465. ADSCrossRefGoogle Scholar
  6. 6.
    Chakravorty, M., Das, K., Raychaudhuri, A.K., Naik, J.P., Prewett, P.D.: Temperature dependent resistivity of platinum-carbon composite nanowires grown by focused ion beam on SiO2/Si substrate. Microelectron. Eng. 88(11), 3360–3364 (2011). doi: 10.1016/j.mee.2011.07.012 CrossRefGoogle Scholar
  7. 7.
    Choi, D., Moneck, M., Liu, X., Oh, S.J., Kagan, C.R., Coffey, K.R., Barmak, K.: Crystallographic anisotropy of the resistivity size effect in single crystal tungsten nanowires. Scientific reports 3, 2591 (2013). doi: 10.1038/srep02591. ADSCrossRefGoogle Scholar
  8. 8.
    Cote, P.J., Meisel, L.V.: Resistivity in amorphous and disordered crystalline alloys. Phys. Rev. Lett. 39 (2), 102–105 (1977). doi: 10.1103/PhysRevLett.39.102 ADSCrossRefGoogle Scholar
  9. 9.
    Courtois, H., Meschke, M., Peltonen, J.T., Pekola, J.P.: Origin of hysteresis in a proximity Josephson junction. Phys. Rev. Lett. 101(6), 067,002 (2008). doi: 10.1103/PhysRevLett.101.067002 CrossRefGoogle Scholar
  10. 10.
    Dai, J., Onomitsu, K., Kometani, R., Krockenberger, Y., Yamaguchi, H., Ishihara, S., Warisawa, S.: Superconductivity in tungsten-carbide nanowires deposited from the mixtures of W(CO) 6 and C 14 H 10. Jpn. J. Appl. Phys. 52(7R), 075,001 (2013). doi: 10.7567/JJAP.52.075001. CrossRefGoogle Scholar
  11. 11.
    De Teresa, J.M., Cárdoba, R., Fernández-Pacheco, A., Montero, O., Strichovanec, P., Ibarra, M.R.: Origin of the difference in the resistivity of as-grown focused-ion- and focused-electronbeam-induced Pt nanodeposits. J. Nanomaterials 10, 11 (2009). doi: 10.1155/2009/936863
  12. 12.
    Della Ratta, A.D.: Focused-ion beam induced deposition of copper. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 11(6), 2195 (1993). doi: 10.1116/1.586455. ADSCrossRefGoogle Scholar
  13. 13.
    Dhakal, P., McMahon, G., Shepard, S., Kirkpatrick, T., Oh, J.I., Naughton, M.J.: Direct-write, focused ion beam-deposited, 7 K superconducting C–Ga–O nanowire. Appl. Phys. Lett. 96(26), 262,511 (2010). doi: 10.1063/1.3458863. CrossRefGoogle Scholar
  14. 14.
    Fenton, J.C., Warburton, P.A.: Monte Carlo simulations of thermal fluctuations in moderately damped Josephson junctions: Multiple escape and retrapping, switching- and return-current distributions, and hysteresis. Phys. Rev. B 78(5), 054,526 (2008). doi: 10.1103/PhysRevB.78.054526 CrossRefGoogle Scholar
  15. 15.
    Fernández-Pacheco, A., De Teresa, J., Córdoba, R., Ibarra, M.: Metal-insulator transition in Pt-C nanowires grown by focused-ion-beam-induced deposition. Phys. Rev. B 79(17), 1–12 (2009). doi: 10.1103/PhysRevB.79.174204 CrossRefGoogle Scholar
  16. 16.
    Fulton, T.A., Dunkleberger, L.N.: Lifetime of the zero-voltage state in Josephson tunnel junctions. Phys. Rev. B 9(11), 4760–4768 (1974). doi: 10.1103/PhysRevB.9.4760 ADSCrossRefGoogle Scholar
  17. 17.
    Giannuzzi, L.A., Stevie, F.A.: A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30(3), 197–204 (1999). doi: 10.1016/S0968-4328(99)00005-0 CrossRefGoogle Scholar
  18. 18.
    Gibson, J.W., Hein, R.A.: Superconductivity of Tungsten. Phys. Rev. Lett. 12(25), 688–690 (1964). doi: 10.1103/PhysRevLett.12.688 ADSCrossRefGoogle Scholar
  19. 19.
    Ginzburg, V., Landau, L.: Zh. Eksperim. i Teor. Fiz. 20, 1064 (1950)Google Scholar
  20. 20.
    Giordano, N.: Evidence for macroscopic quantum tunneling in one-dimensional superconductors. Phys. Rev. Lett. 61(18), 2137–2140 (1988). doi: 10.1103/PhysRevLett.61.2137 ADSCrossRefGoogle Scholar
  21. 21.
    Guillamón, I., Suderow, H., Fernández-Pacheco, A., Sesé, J., Córdoba, R., Ibarra, M.R., Vieira, S.: Direct observation of melting in a two-dimensional superconducting vortex lattice. Nat. Phys. 5(9), 651–655 (2009). doi: 10.1038/nphys1368. CrossRefGoogle Scholar
  22. 22.
    Guillamón, I., Suderow, H., Vieira, S., Fernández-Pacheco, A., Sesé, J., Córdoba, R., De Teresa, J.M., Ibarra, M.R.: Nanoscale superconducting properties of amorphous W-based deposits grown with a focused-ion-beam. New J. Phys. 10, 093,005 (2008). doi: 10.1088/1367-2630/10/9/093005 CrossRefGoogle Scholar
  23. 23.
    Helfand, E., Werthamer, N.R.: Temperature and purity dependence of the superconducting critical field, H c 2 . II. Phys. Rev. 147(1), 288–294 (1966). doi: 10.1103/PhysRev.147.288 ADSCrossRefMATHGoogle Scholar
  24. 24.
    Kim, S.H., Somorjai, G.A.: Stereospecific ZieglerNatta model catalysts produced by electron beam-induced deposition of TiCl 4 : deposition kinetics, film structure, and surface structure. The Journal of Physical Chemistry B 106(6), 1386–1391 (2002). doi: 10.1021/jp013239q CrossRefGoogle Scholar
  25. 25.
    Krasnov, V.M., Bauch, T., Intiso, S., Hürfeld, E., Akazaki, T., Takayanagi, H., Delsing, P.: Collapse of thermal activation in moderately damped Josephson junctions. Phys. Rev. Lett. 95(15), 157,002 (2005). doi: 10.1103/PhysRevLett.95.157002 CrossRefGoogle Scholar
  26. 26.
    Langer, J.S., Ambegaokar, V.: Intrinsic resistive transition in narrow superconducting channels. Phys. Rev. 164(2), 498–510 (1967). doi: 10.1103/PhysRev.164.498 ADSCrossRefGoogle Scholar
  27. 27.
    Langfischer, H., Basnar, B., Hutter, H., Bertagnolli, E.: Evolution of tungsten film deposition induced by focused ion beam. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 20(4), 1408 (2002). doi: 10.1116/1.1486230 ADSCrossRefGoogle Scholar
  28. 28.
    Lau, C.N., Markovic, N., Bockrath, M., Bezryadin, A., Tinkham, M.: Quantum phase slips in superconducting nanowires. Phys. Rev. Lett. 87(21), 217,003 (2001). doi: 10.1103/PhysRevLett.87.217003 CrossRefGoogle Scholar
  29. 29.
    Li, P., Wu, P.M., Bomze, Y., Borzenets, I.V., Finkelstein, G., Chang, A.M.: Switching currents limited by single phase slips in one-dimensional superconducting Al nanowires. Phys. Rev. Lett. 107(13), 137,004 (2011). doi: 10.1103/PhysRevLett.107.137004 CrossRefGoogle Scholar
  30. 30.
    Li, W., Fenton, J. C., Wang, Y., McComb, D. W., Warburton, P.A.: Tunability of the superconductivity of tungsten films grown by focused-ion-beam direct writing, vol. 104 (2008)Google Scholar
  31. 31.
    Li, W., Fenton, J.C., Warburton, P.A.: Focused-ion-beam direct-writing of ultra-thin superconducting tungsten composite films. IEEE Trans. Appl. Supercond. 19(3), 2819–2822 (2009). doi: 10.1109/TASC.2009.2019251 ADSCrossRefGoogle Scholar
  32. 32.
    Likharev, K.: Superconducting weak links. Rev. Mod. Phys. 51(1), 101–159 (1979). doi: 10.1103/RevModPhys.51.101 ADSCrossRefGoogle Scholar
  33. 33.
    Lin, J.F., Bird, J.P., Rotkina, L., Bennett, P.A.: Classical and quantum transport in focused-ion-beam-deposited Pt nanointerconnects. Appl. Phys. Lett. 82(5), 802–804 (2003). doi: 10.1063/1.1541940 ADSCrossRefGoogle Scholar
  34. 34.
    Little, W.A.: Decay of Persistent Currents in Small Superconductors. Phys. Rev. 156(2), 396–403 (1967). doi: 10.1103/PhysRev.156.396 ADSCrossRefGoogle Scholar
  35. 35.
    Longobardi, L., Massarotti, D., Rotoli, G., Stornaiuolo, D., Papari, G., Kawakami, A., Pepe, G.P., Barone, A., Tafuri, F.: Thermal hopping and retrapping of a Brownian particle in the tilted periodic potential of a NbN/MgO/NbN Josephson junction. Phys. Rev. B 84(18), 184,504 (2011). doi: 10.1103/PhysRevB.84.184504 CrossRefGoogle Scholar
  36. 36.
    Luxmoore, I.J., Ross, I.M., Cullis, A.G., Fry, P.W., Orr, J., Buckle, P.D., Jefferson, J.H.: Low temperature electrical characterisation of tungsten nano-wires fabricated by electron and ion beam induced chemical vapour deposition. Thin Solid Films 515(17), 6791–6797 (2007). doi: 10.1016/j.tsf.2007.02.029. ADSCrossRefGoogle Scholar
  37. 37.
    Martinis, J.M., Devoret, M.H., Clarke, J.: Experimental tests for the quantum behavior of a macroscopic degree of freedom: The phase difference across a Josephson junction. Phys. Rev. B 35(10), 4682–4698 (1987). doi: 10.1103/PhysRevB.35.4682 ADSCrossRefGoogle Scholar
  38. 38.
    Massarotti, D., Longobardi, L., Galletti, L., Stornaiuolo, D., Montemurro, D., Pepe, G., Rotoli, G., Barone, A., Tafuri, F.: Escape dynamics in moderately damped Josephson junctions (Review Article). Low Temperature Physics 38(4), 263 (2012). doi: 10.1063/1.3699625. ADSCrossRefGoogle Scholar
  39. 39.
    McCumber, D.E., Halperin, B.I.: Time scale of intrinsic resistive fluctuations in thin superconducting wires. Phys. Rev. B 1(3), 1054–1070 (1970). doi: 10.1103/PhysRevB.1.1054 ADSCrossRefGoogle Scholar
  40. 40.
    Mooij, J.E., Harmans, C.J.P.M.: Phase-slip flux qubits. New J. Phys. 7(1), 219–219 (2005). doi: 10.1088/1367-2630/7/1/219. ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Mooij, J.E., Nazarov, Y.V.: Superconducting nanowires as quantum phase-slip junctions. Nat. Phys. 2(3), 169–172 (2006). doi: 10.1038/nphys234 CrossRefGoogle Scholar
  42. 42.
    Osofsky, M.S., Soulen, R.J., Claassen, J.H., Trotter, G., Kim, H., Horwitz, J.S.: New insight into enhanced superconductivity in metals near the metal-insulator transition. Phys. Rev. Lett. 87(19), 197,004 (2001). doi: 10.1103/PhysRevLett.87.197004 CrossRefGoogle Scholar
  43. 43.
    Peñate Quesada, L., Mitra, J., Dawson, P.: Non-linear electronic transport in Pt nanowires deposited by focused ion beam. Nanotechnology 18(21), 215,203 (2007). doi: 10.1088/0957-4484/18/21/215203. CrossRefGoogle Scholar
  44. 44.
    Sadki, E.S., Ooi, S., Hirata, K.: Focused-ion-beam-induced deposition of superconducting nanowires. Appl. Phys. Lett. 85(25), 6206–6208 (2004). doi: 10.1063/1.1842367 ADSCrossRefGoogle Scholar
  45. 45.
    Sahu, M., Bae, M.H., Rogachev, A., Pekker, D., Wei, T.C., Shah, N., Goldbart, P.M., Bezryadin, A.: Individual topological tunnelling events of a quantum field probed through their macroscopic consequences. Nat. Phys. 5(7), 503–508 (2009). doi: 10.1038/nphys1276 CrossRefGoogle Scholar
  46. 46.
    Shah, N., Pekker, D., Goldbart, P.M.: Inherent Stochasticity of superconductor-resistor switching behavior in nanowires. Phys. Rev. Lett. 101(20), 207,001 (2008). doi: 10.1103/PhysRevLett.101.207001 CrossRefGoogle Scholar
  47. 47.
    Skocpol, W.J.: Self-heating hotspots in superconducting thin-film microbridges. Journal of Applied Physics 45(9), 4054 (1974). doi: 10.1063/1.1663912. ADSCrossRefGoogle Scholar
  48. 48.
    Spoddig, D., Schindler, K., Rödiger, P., Barzola-Quiquia, J., Fritsch, K., Mulders, H., Esquinazi, P.: Transport properties and growth parameters of PdC and WC nanowires prepared in a dual-beam microscope. Nanotechnology 18(49), 495,202 (2007). doi: 10.1088/0957-4484/18/49/495202. CrossRefGoogle Scholar
  49. 49.
    Sun, Y., Wang, J., Zhao, W., Tian, M., Singh, M., Chan, M.H.W.: Voltage-current properties of superconducting amorphous tungsten nanostrips. Scientific reports 3, 2307 (2013). doi:10.1038/srep02307.
  50. 50.
    Teresa, J.M.D., Fernández-Pacheco, A., Córdoba, R., Sesé, J., Ibarra, M.R., Guillamón, I., Suderow, H., Vieira, S.: Transport properties of superconducting amorphous W-based nanowires fabricated by focused-ion-beam-induced-deposition for applications in Nanotechnology. Mater. Res. Soc. Symp. Proc. 1180, CC04–09 (2009). doi: 10.1557/PROC-1180-CC04-09 CrossRefGoogle Scholar
  51. 51.
    Tinkham, M., Free, J., Lau, C., Markovic, N.: Hysteretic I-V curves of superconducting nanowires. Phys. Rev. B 68(13), 134,515 (2003). doi: 10.1103/PhysRevB.68.134515 CrossRefGoogle Scholar
  52. 52.
    Utke, I., Hoffmann, P., Melngailis, J.: Gas-assisted focused electron beam and ion beam processing and fabrication. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 26(4), 1197 (2008). doi: 10.1116/1.2955728.
  53. 53.
    Vion, D., Götz, M., Joyez, P., Esteve, D., Devoret, M.H.: Thermal activation above a dissipation barrier: switching of a small Josephson junction. Phys. Rev. Lett. 77(16), 3435–3438 (1996). doi: 10.1103/PhysRevLett.77.3435 ADSCrossRefGoogle Scholar
  54. 54.
    Werthamer, N.R., Helfand, E., Hohenberg, P.C.: Temperature and purity dependence of the superconducting critical field, H_{c2}. III. Electron Spin and Spin-Orbit Effects. Phys. Rev. 147(1), 295–302 (1966). doi: 10.1103/PhysRev.147.295 ADSCrossRefGoogle Scholar
  55. 55.
    Ziman, J.M.: Electrons and phonons: The theory of transport phenomena in solids oxford university press (1961)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.University Grenoble AlpesGrenobleFrance
  2. 2.CEA, LETI-SCMCGrenobleFrance
  3. 3.CEA INAC-PHELIQSGrenobleFrance
  4. 4.IMECLeuvenBelgium

Personalised recommendations