Journal of Superconductivity and Novel Magnetism

, Volume 30, Issue 8, pp 2081–2089 | Cite as

Prediction of Magnetocaloric Effect by a Phenomenological Model and Critical Behavior for La0.78Dy0.02Ca0.2MnO3 Compound

  • K. RiahiEmail author
  • I. Messaoui
  • W. Cheikhrouhou-Koubaa
  • S. Mercone
  • B. Leridon
  • M. Koubaa
  • A. Cheikhrouhou
Original Paper


The La0.78Dy0.02Ca0.2MnO3 (LDCMO) compound prepared via high-energy ball-milling (BM) presents a ferromagnetic-to-paramagnetic transition (FM-PM) and undergoes a second-order phase transition (SOFT). Based on a phenomenological model, magnetocaloric properties of the LDCMO compound have been studied. Thanks to this model, we can predict the values of the magnetic entropy change ΔS, the full width at half-maximum δ T FWHM, the relative cooling power (RCP), and the magnetic specific heat change ΔC p for our compound. The significant results under 2 T indicate that our compound could be considered as a candidate for use in magnetic refrigeration at low temperatures. In order to further understand the FM-PM transition, the associated critical behavior has been investigated by magnetization isotherms. The critical exponents estimated by the modified Arrott plot, the Kouvel–Fisher plot, and the critical isotherm technique are very close to those corresponding to the 3D-Ising standard model (β = 0.312 ± 0.07, γ = 1.28 ± 0.02, and δ = 4.80).Those results revealed a long-range ferromagnetic interaction between spins.


Perovskite 3D-Ising model Magnetocaloric properties 



This work was supported by the Tunisian Ministry of Higher Education and Scientific Research. The magnetic measurements at ESPCI have been supported through grants from Region Ile-de-France.


  1. 1.
    Ramirez, A.P.: Colossal-magnetoresistance. J. Phy: Condens. Matter 9, 8171–8199 (1997)ADSGoogle Scholar
  2. 2.
    Nagaev, E.L.: Colossal magnetoresistance materials: manganites and conventional ferromagnetic semiconductors. Phys. Rep. 346, 387 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    Zener, C.: Interaction between d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82 (1951)Google Scholar
  4. 4.
    Millis, A.J., Littlewood, P.B., Shraiman, B.I.: Double exchange alone does not explain the resistivity of La1−xSrxMnO3. Phys. Rev. Lett. 74, 5144 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    Mori, S., Chen, C. H., Cheong, S.W.: Paired and unpaired charge stripes in the ferromagnetic phase of La0.5Ca0.5MnO3. Phys. Rev. Lett. 81, 3972 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    Prinz, G.A: Spin-polarized transport. Phys. Today 48, 58 (1995)CrossRefGoogle Scholar
  7. 7.
    Tomioka, Y., Asamitsu, A., Moritomo, Y., Kuwahara, H., Tokura, Y.: Collapse of a charge-ordered state under a magnetic field in Pr1/2Sr1/2MnO3. Phys. Rev. Lett. 74, 5108 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    Khiem, N. V., Phong, P. T., Bau, L. V., Nam, D. N. H., Hong, L. V., Phuc, N. X.: Critical parameters near the ferromagnetic-paramagnetic phase transition in La0.7A0.3(Mn1−x b x)O3(A = Sr; B = Ti and Al; x = 0.0 and 0.05) compounds. J. Magn. Magn. Mater. 321, 2027 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Stanley, H.E: Introduction to phase transitions and critical phenomena. Oxford University Press, London (1971)Google Scholar
  10. 10.
    Phan, M. H., Franco, V., Bingham, N. S., Srikanth, H., Hur, N. H., Yu, S.C.: Tricritical point and critical exponents of La0.7 Ca0.3−xSrxMnO3 (x = 0, 0.05, 0.1, 0.2, 0.25) single crystals. J. Alloys. Compd. 508, 238–244 (2010)CrossRefGoogle Scholar
  11. 11.
    Zghal, E., Koubaa, M., CheikhrouhouKoubaa, W., Cheikhrouhou, A., Sicard, L., Ammar-Merah, S.: Influence of magnetic field on the critical behavior of La0.7Ca0.2Ba0.1MnO3. J. Alloys. Comp. 627, 211–217 (2015)CrossRefGoogle Scholar
  12. 12.
    Suryanarayana, C.: ‘Mechanical alloying and milling’. Prog. Mater. Sci. 46(1), 184 (2001)Google Scholar
  13. 13.
    Blazquez, J. S., ipus, J. J., Moreno-Ramirez, L. M., Borrego, J. M., Lozano-Perez, S., FRANCO, V., CONDE, C. F., CONDE, A.: Analysis of the magnetocaloric effect in powder samples obtained by ball milling. Metall. Mater. Trans. E. 2, 136 (2015)Google Scholar
  14. 14.
    Riahi, K., Messaoui, I., Cheikhrouhou-Koubaa, W., Mercone, S., Leridon, B., Koubaa, M., Cheikhrouhou, A.: Effect of synthesis route on the structural, magnetic and magnetocaloric properties of La0.78Dy0.02Ca0.2MnO3 manganite: a comparison between sol-gel, high-energy ball-milling and solid state process. J. Alloys. Compd. 688, 1028–1038 (2016)CrossRefGoogle Scholar
  15. 15.
    Phan, M. H., Tian, S. B., Yu, S. C., Ulyanov, A. N.: Magnetic and magnetocaloric properties of La0.7Ca0.3−xBaxMnO3 compounds. J. Magn. Magn. Mater. 256, 306–310 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    Hamad, M.A.: Prediction of thermomagnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3. Phase Trans 85, 106–112 (2012)CrossRefGoogle Scholar
  17. 17.
    Hamad, M.A.: Calculation on electrocaloric properties of ferroelectric SrBi2Ta2O9. Phase Trans 85, 159–168 (2012)CrossRefGoogle Scholar
  18. 18.
    Fisher, M.E: The theory of equilibrium critical phenomena. Rep. Prog. Phys. 30, 615 (1967)ADSCrossRefGoogle Scholar
  19. 19.
    Stanley, H.E.: Scaling, universality, and renormalization: three pillars of modern critical phenomena. Rev. Mod. Phys. 71, 358 (1999)CrossRefGoogle Scholar
  20. 20.
    Kaul, S.N: Thermal modulation studies of the critical magnetic susceptibility of Gd. J. Magn. Magn. Mater. 53, 5 (1985)ADSCrossRefGoogle Scholar
  21. 21.
    Pennington, W.T.: DIAMOND visual crystal structure information system. J. Appl. Cryst. 32, 1028–1029 (1999)CrossRefGoogle Scholar
  22. 22.
    Mira, J., Rivas, J., Hueso, L. E., Rivadulla, F., Lopez-Quintela, M.A.: Tuning of colossal magnetoresistance via grain size change in La0.67Ca0.33MnO3. J. Appl. Phys. 91, 8903 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    Arrot, A., Noakes, J.E.: Approximate equation of state for nickel near its critical temperature. Phys. Rev. Lett. 19, 786 (1967)ADSCrossRefGoogle Scholar
  24. 24.
    Kouvel, J. S., Fisher, M.E.: Detailed magnetic behavior of nickel near its Curie point. Phys. Rev. 136, A1626 (1964)ADSCrossRefGoogle Scholar
  25. 25.
    Widom, B.: Equation of state in the neighborhood of the critical point. J. Chem. Phys. 43, 3898 (1965)ADSCrossRefGoogle Scholar
  26. 26.
    Mohamed, Za., Tka, E., Dhahri, J., Hlil, E.K: Short-range ferromagnetic order in La0.67Sr0.16Ca0.17MnO3 perovskite manganite. J. Alloys. Compd. 619, 520–526 (2015)CrossRefGoogle Scholar
  27. 27.
    Khlifi, M., Tozri, A., Bejar, M., Dhahri, E., Hlil, E.K.: Effect of calcium deficiency on the critical behavior near the paramagnetic to ferromagnetic phase transition temperature in La0.8 Ca0.2MnO3oxides. J. Magn. Magn. Mater. 324, 2142–2146 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Kim, D., Revaz, B., Zink, B. L., Hellman, F., Rhyne, J. J., Mitchell, J. F.: Tricritical point and the doping dependence of the order of the ferromagnetic phase transition of La1−xCaxMnO3. Phys. Rev. Lett. 89, 227202 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    Zhang, P., Lampen, P., Phan, T. L., Yu, S. C., Thanh, T. D., Dan, N. H., Lam, V. D., Srikanth, H., Phan, M. H.: Influence of magnetic field on critical behavior near a first order transition in optimally doped manganites: The case of La1−xCaxMnO3 (0.2x0.4). J. Magn. Magn. Mater. 348, 146 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Jiang, W., Zhou, X., Williams, G., Mukovskii, Y., Privenzentsev, R.: The evolution of Griffiths-phase-like features and colossal magnetoresistance in La(1−x)Ca(x)MnO3 (0.18 x 0.27) across the compositional metal-insulator boundary. J. Phys. Condens. Matter 21, 415603 (2009)CrossRefGoogle Scholar
  31. 31.
    Ferreira, P. M. G. L., Souza, J. A.: Scaling behavior of nearly first order magnetic phase transitions. J. Phys. Condens. Matter 23, 226003 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    Oleaga, A., Salazar, A., CiomagaHantean, M., Balakrishnan, G.: Three-dimensional Ising critical behavior in R0.6Sr0.4MnO3 (R = Pr, Nd) manganites. Phys. Rev. B 92, 024409 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    Ezaami, A., Sfifir, I., Cheikhrouhou-Koubaa, W., Koubaa, M., Cheikhrouhou, A.: Critical properties in La0 ⋅7Ca0 ⋅2Sr0 ⋅1MnO3 manganite: a comparison between sol-gel and solid state process. J. Alloys Comp 693, 658–666 (2016)CrossRefGoogle Scholar
  34. 34.
    Messaoui, I., Omrani, H., Mansouri, M., CheikhrouhouKoubaa, W., Koubaa, M., Cheikhrouhou, A., Hlil, E.K.: Magnetic, magnetocaloric and critical behavior investigation of Nd0.7 Ca0.15Sr0.15MnO3 prepared by high-energy ball milling. Ceram. Intern. 42, 17032–17044 (2016)CrossRefGoogle Scholar
  35. 35.
    Phan, M. H., Yu, S. C.: Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325–340 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    Hamad, M. A.: Theoretical work on magnetocaloric effect in La0.75Ca0.25MnO3. J .Adv. Ceram. 1(4), 290 (2012)CrossRefGoogle Scholar
  37. 37.
    Mbarek, H., M’nasri, R., Cheikhrouhou-Koubaa, W., Cheikhrouhou, A.: Magnetocaloric effect near room temperature in (1-y)La0.8 Ca0.05K0.15MnO3/yLa0.8K0.2MnO3 composites. Phys. Stat. Sol. A. 211, 975 (2014)CrossRefGoogle Scholar
  38. 38.
    Phan, T.L., Zhang, Y.D., Zhang, P., Thanh, T.D., Yu, S.C.: Critical behavior and magnetic-entropy change of orthorhombic La0.7Ca0.2Sr0.1MnO3. J. Appl. Phys. 112, 093906 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    Zhang, P., Lampen, P., Phan, T. L., Yu, S. C., Thanh, T. D., Dan, N. H., Lam, V. D., Srikanth, H., Phan, M.H.: Influence of magnetic field on critical behavior near a first order transition in optimally doped manganites: The case of La1−xCaxMnO3 (0.2x0.4). J. Magn. Magn. Mater 348, 146 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    Taran, S., Chaudhuri, B.K., Chatterjee, S., Yang, H.D., Neeleshwar, S., Chen, Y.Y.: Critical exponents of the La0.7Sr0.3MnO3, La0.7Ca0.3MnO3, and Pr0.7Ca0.3MnO3 systems showing correlation between transport and magnetic properties. J. Appl. Phys. 98, 103903 (2005)ADSCrossRefGoogle Scholar
  41. 41.
    Kim, D., Revaz, B., Zink, B.L., Hellman, F., Rhyne, J.J., Mitchell, J.F.: Tricritical point and the doping dependence of the order of the ferromagnetic phase transition of La1−xCaxMnO3. Phys. Rev. Lett. 89, 227202 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    Smari, M., Walha, I., Omri, A., Rousseau, J. J., Dhahri, E., Hlil, E. K.: Critical parameters near the ferromagnetic–paramagnetic phase transition in La0.5Ca0.5−xAgxMnO3 compounds (0.1x0.2). Ceram. Int. 40, 8945 (2014)CrossRefGoogle Scholar
  43. 43.
    Fan, J., Ling, L., Hong, B., Zhang, L., Pi, L., Zhang, Y.: Critical properties of the perovskite manganite La0.1Nd0.6Sr0.3MnO3. Phys. Rev. B 81, 144426 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    Motome, Y., Furulawa, N.: Critical temperature of ferromagnetic transition in three-dimensional double-exchange models. J. Phys. Soc. Jap. 69, 3785–3788 (2000)ADSCrossRefGoogle Scholar
  45. 45.
    Omrani, H., Mansouri, M., CheikhrouhouKoubaa, W., Koubaa, M., Cheikhrouhou, A.: Critical behavior study near the paramagnetic to ferromagnetic phase transition temperature in Pr0.6−xErx Ca0.1Sr0.3MnO3 (x = 0, 0.02 and 0.06) manganites. RSC Adv 6, 78017–78027 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • K. Riahi
    • 1
    Email author
  • I. Messaoui
    • 1
  • W. Cheikhrouhou-Koubaa
    • 1
  • S. Mercone
    • 2
  • B. Leridon
    • 3
  • M. Koubaa
    • 1
  • A. Cheikhrouhou
    • 1
  1. 1.LT2S Lab (LR16 CRNS 01), Digital Research Center of SfaxSfax TechnoparkSfaxTunisia
  2. 2.LSPM (UPR 3407) CNRSUniversité Paris 13, Sorbonne Paris CitéVilletaneuseFrance
  3. 3.LPEM (UPR A0005) CNRSESPCI ParisTechParis CEDEX 5France

Personalised recommendations