Journal of Superconductivity and Novel Magnetism

, Volume 30, Issue 1, pp 151–156 | Cite as

Multigap Superconductivity at Extremely High Temperature: A Model for the Case of Pressurized H2S

  • A. Bussmann-Holder
  • J. Köhler
  • A. Simon
  • M. Whangbo
  • A. BianconiEmail author
Original Paper


It is known that in pressurized H2S, the complex electronic structure in the energy range of 200 meV near the chemical potential can be separated into two electronic components: the first characterized by steep bands with a high Fermi velocity and the second by flat bands with a vanishing Fermi velocity. Also, the phonon modes interacting with electrons at the Fermi energy can be separated into two components: hard modes with high energy around 150 meV and soft modes with energies around 60 meV. Therefore, we discuss here a multiband scenario in the standard Bardeen–Cooper–Schrieffer (BCS) approximation where the effective BCS coupling coefficient is in the range 0.1–0.32. We consider a first (second) BCS condensate in the strong (weak) coupling regime 0.32 (0.15). We discuss different scenarios segregated in different portions of the material. The results show the phenomenology of unconventional superconducting phases in this two-gap superconductivity scenario where there are two electronic components in two Fermi surface spots, and the pairing is mediated by either a soft or a hard phonon branch where the interband exchange term, also if small, plays a key role for the emergence of high-temperature superconductivity in pressurized sulfur hydride.


Pressurized H2Multigap superconductivity Isotope effect 


  1. 1.
    Ashcroft, N.W.: Phys. Rev. Lett. 26, 1748 (1968)ADSCrossRefGoogle Scholar
  2. 2.
    Ashcroft, N.W.: Phys. Rev. Lett. 92, 187002 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Zurek, E., Hoffmann, R., Ashcroft, N.W., Oganov, A.R., Lyakhov, O.: Proc. Nat. Acad. Sci. 106, 17640 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Ashcroft, N.W., Bianconi, A. (eds.): Symmetry and heterogeneity in high temperature superconductors. vol. 214 of NATO Science Series II: Mathematics, Physics and Chemistry 3-20 (2006)Google Scholar
  5. 5.
    Babaev, E., Sudbo, A., Ashcroft, N.W.: Nature 431, 666 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Ji, F., Grochala, W., Jaroń, T., Hoffmann, R., Bergara, A., Ashcroft, N.W.: Phys. Rev. Lett. 96, 017006 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Li, Y., Hao, J., Liu, H., Li, Y., Ma, Y.: J. Chem. Phys. 140, 174712 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Duan, D., Liu, Y., Tian, F., Li, D., Huang, X., Zhao, Z., Yu, H., Liu, B., Tian, W., Cui, T.: Sci. Rep. 4, 6968 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Drozdov, A.P., Eremets, M.I., Troyan, I.A., Ksenofontov, V., Shylin, S.I.: Nature 525, 73 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Bianconi, A., Jarlborg, T.: EPL Europhys. Lett. 112, 37001 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Bednorz, J.G., Müller, K. A.: Z. Phys. B 64, 189 (1986)ADSCrossRefGoogle Scholar
  12. 12.
    Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Phys. Rev. 108, 1175 (1957)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Eliashberg, G.M.: Sov. Phys. JETP 11, 696 (1960)MathSciNetGoogle Scholar
  14. 14.
    Müller, K. A.: Nat. (London) 377, 133 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    Müller, K. A., Keller, H.: High-Tc Superconductivity 1996: Ten Years after the Discovery, p 7, Kluwer, Dordrecht (1997)Google Scholar
  16. 16.
    Khasanov, R., Strässle, S., Di Castro, D., Masui, T., Miyasaka, S., Tajima, S., Bussmann-Holder, A., Keller, H.: Phys. Rev. Lett. 99, 237601 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    Bussmann-Holder, A., Keller, H.: J. Phys.: Condens. Matter. 24, 233201 (2012)ADSGoogle Scholar
  18. 18.
    Keller, H., Bussmann-Holder, A., Alex Müller, K.: Mater. Today 11, 38 (2008)CrossRefGoogle Scholar
  19. 19.
    Bussmann-Holder, A., Keller, H.: J. Phys.: Conf. Ser. 108, 012019 (2008)Google Scholar
  20. 20.
    Deng, S., Simon, A., Köhler, J.: Solid State Sci. 2, 31 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    Deng, S., Simon, A., Köhler, J.: J. Supercond. 16, 477 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    Deng, S., Simon, A., Köhler, J.: Int. J. Mod. Phys. B 19, 29 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    Fossheim, K., Sudbø, A.: Superconductivity physics and applications. Wiley, West Sussex, England (2004)CrossRefGoogle Scholar
  24. 24.
    Bianconi, A., Filippi, M.: Symmetry and heterogeneity in high-temperature superconductors, vol. 214, p 21. Springer, Nato Science Series (2006)Google Scholar
  25. 25.
    Bianconi, A., Di Castro, D., Agrestini, S., Campi, G., Saini, N.L., Saccone, A., De Negri, S., Giovannini, M.: J. Phys.: Condens. Matter. 13, 7383 (2001)ADSGoogle Scholar
  26. 26.
    Gordon, E.E., Xu, K., Xiang, H., Bussmann-Holder, A., Kremer, R.K., Simon, A., Köhler, J., Whangbo, M.-H.: Angew. Chem. Int. Ed. Engl. 55(1) (2016)Google Scholar
  27. 27.
    Moskalenko, V.A.: Fiz. Metal. Metalloved. 8, 503 (1959)Google Scholar
  28. 28.
    Suhl, H., Matthias, B.T., Walker, L.R.: Phys. Rev. Lett. 3, 552 (1959)ADSCrossRefGoogle Scholar
  29. 29.
    Bussmann-Holder, A., Keller, H. In: Alexandrov, A. S. (ed.) : Polarons in advanced materials, vol. 103, p 599. Springer Series in Materials Science (2007)Google Scholar
  30. 30.
    Gor’kov, L.P., Kresin, V.Z.: Sci. Rep. 6, 25608 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    Errea, I., Calandra, M., Pickard, C.J., Nelson, J., Needs, R.J., Li, Y., Liu, H., Zhang, Y., Ma, Y., Mauri, F.: Phys. Rev. Lett. 114, 157004 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    Bernstein, N., Hellberg, C.S., Johannes, M.D., Mazin, I.I., Mehl, M.J.: Phys. Rev. B 91, 060511 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    Komelj, M., Krakauer, H.: Phys. Rev. B 92, 205125 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    Papaconstantopoulos, D.A., Klein, B.M., Mehl, M.J., Pickett, W.E.: Phys. Rev. B 91, 184511 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    Jarlborg, T., Bianconi, A.: Sci. Rep. 6, 24816 (2016). doi: 10.1038/srep24816 ADSCrossRefGoogle Scholar
  36. 36.
    Bussmann-Holder, A., Köhler, J., Whangbo, M.H., Bianconi, A., Simon, A.: Novel Supercond. Mater. 2, 37 (2016). doi: 10.1515/nsm-2016-0004 Google Scholar
  37. 37.
    Skoskiewicz, T.: Phys. Stat. Sol. (a) 11, K123 (1972)ADSCrossRefGoogle Scholar
  38. 38.
    Stritzker, B., Buckel, W.: Z. Phys. 257, 1 (1972)ADSCrossRefGoogle Scholar
  39. 39.
    Karakozov, A.E., Maksimov, E.G.: Zh. Eksp. Teor. Fiz. 74, 681 (1978)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • A. Bussmann-Holder
    • 1
  • J. Köhler
    • 1
  • A. Simon
    • 1
  • M. Whangbo
    • 2
  • A. Bianconi
    • 3
    • 4
    Email author
  1. 1.Max Planck Institute for Solid State ResearchStuttgartGermany
  2. 2.Department of ChemistryNorth Carolina State UniversityRaleighUSA
  3. 3.Rome International Center for Materials Science Superstripes (RICMASS)RomeItaly
  4. 4.National Research Nuclear University, MEPhIMoscowRussia

Personalised recommendations