Exploring Multi-Component Superconducting Compounds by a High-Pressure Method and Ceramic Combinatorial Chemistry

  • N. D. Zhigadlo
  • M. Iranmanesh
  • W. Assenmacher
  • W. Mader
  • J. Hulliger
Original Paper

Abstract

In this short review, we provide some new insights into the material synthesis and characterization of modern multi-component superconducting oxides. Two different approaches such as the high-pressure, high-temperature method and ceramic combinatorial chemistry will be reported with application to several typical examples. First, we highlight the key role of the extreme conditions in the growth of Fe-based superconductors, where a careful control of the composition-structure relation is vital for understanding the microscopic physics. The availability of high-quality LnFeAsO (Ln = lanthanide) single crystals with substitution of O by F, Sm by Th, Fe by Co, and As by P allowed us to measure intrinsic and anisotropic superconducting properties such as Hc2, Jc. Furthermore, we demonstrate that combinatorial ceramic chemistry is an efficient way to search for new superconducting compounds. A single-sample synthesis concept based on multi-element ceramic mixtures can produce a variety of local products. Such a system needs local probe analyses and separation techniques to identify compounds of interest. We present the results obtained from random mixtures of Ca, Sr, Ba, La, Zr, Pb, Tl, Y, Bi, and Cu oxides reacted at different conditions. By adding Zr but removing Tl, Y, and Bi, the bulk state superconductivity got enhanced up to about 122 K.

Keywords

Superconductors High-pressure synthesis Ceramic combinatorial chemistry 

References

  1. 1.
    Campi, G., Bianconi, A., Poccia, N., Bianconi, G., Barda, L., Arrighetti, G., Innocenti, D., Karpinski, J., Zhigadlo, N.D., Kazakov, S.M., Burghammer, M., Zimmermann, M.v., Sprung, M., Ricci, A.: Nature 525, 359 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    Zhigadlo, N.D., Katrych, S., Bukowski, Z., Weyneth, S., Puzniak, R., Karpinski, J.: J. Phys. Condens. Matter 20, 342202 (2008). doi:10.1088/0953-8984/20/34/342202 Google Scholar
  3. 3.
    Karpinski, J., Zhigadlo, N.D., Katrych, S., Bukowski, Z., Moll, P., Weyeneth, S., Keller, H., Puzniak, R., Tortello, M., Daghero, D., Gonnelli, R., Maggio-Aprile, I., Fasano, Y., Fischer, Ø., Rogacki, K., Batlogg, B.: Physica C 469, 370 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Zhigadlo, N.D., Katrych, S., Weyeneth, S., Puzniak, R., Moll, P.J.W., Bukowski, Z., Karpinski, J., Keller, H., Batlogg, B.: Phys. Rev. B 82, 064517 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Zhigadlo, N.D., Katrych, S., Bendele, M., Moll, P.J.W., Tortello, M., Weyeneth, S., Pomjakushin, V.Y., Kanter, J., Puzniak, R., Bukowski, Z., Keller, H., Gonnelli, R.S., Khasanov, R., Karpinski, J., Batlogg, B.: Phys. Rev. B 84, 134526 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Zhigadlo, N.D., Weyeneth, S., Katrych, S., Moll, P.J.W., Rogacki, K., Bosma, S., Puzniak, R., Karpinski, J., Batlogg, B.: Phys. Rev. B 86, 214509 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Zhigadlo, N.D.: J. Cryst. Growth 382, 75 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Moll, P.J.W., Puzniak, R., Balakirev, F., Rogacki, K., Karpinski, J., Zhigadlo, N.D., Batlogg, B.: Nat. Mater 9, 628 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Fang, L., Jia, Y., Mishra, V., Chaparro, C., Vlasko-Vlasov, V.K., Koshelev, A.E., Welp, U., Crabtree, G.W., Zhu, S., Zhigadlo, N.D., Katrych, S., Karpinski, J., Kwok, W.K.: Nat. Commun. 4, 2655 (2013)ADSGoogle Scholar
  10. 10.
    Iida, K., Hänisch, J., Tarantini, C., Kurth, F., Jaroszynski, J., Ueda, S., Naito, M., Ichinose, A., Tsukada, I., Reich, E., Grinenko, V., Schultz, L., Holzapfel, B.: Sci. Rep. 3, 2139 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Moll, P.J.W., Balicas, L., Geshkenbein, V., Blatter, G., Karpinski, J., Zhigadlo, N.D., Batlogg, B.: Nat. Mater 12, 134 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Moll, J.P.W., Balicas, L., Zhu, X., Wen, H.-H., Zhigadlo, N.D., Karpinski, J., Batlogg, B.: Phys. Rev. Lett. 113, 186402 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Charnukha, A., Thirupathaiah, S., Zabolotnyy, V.B., Büchner, B., Zhigadlo, N.D., Batlogg, B., Borisenko, S.V.: Sci. Rep. 5, 10392 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Charnukha, A., Evtushinsky, D.V., Matt, C.E., Xu, N., Shi, M., Büchner, B., Zhigadlo, N.D., Batlogg, B., Borisenko, S.V.: Sci. Rep. 5, 18273 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Borisenko, S.V., Evtushinsky, D.V., Liu, Z.-H., Morozov, I., Kappenberger, R., Wurmehl, S., Büchner, B., Yaresko, A.N., Kim, T.K., Hoesch, M., Wolf, T., Zhigadlo, N.D.: Nat. Phys. 12, 311 (2016)CrossRefGoogle Scholar
  16. 16.
    Ricci, A., Poccia, N., Ciasca, G., Fratini, M., Bianconi, A.: J. Supercond. Nov. Magn. 22, 589 (2009)CrossRefGoogle Scholar
  17. 17.
    Ricci, A., Poccia, N., Joseph, B., Barba, L., Arrighetti, G., Ciassa, G., Yan, J.-Q., McCallum, R.W., Lograsso, T.A., Zhigadlo, N.D., Karpinski, J., Bianconi, A.: Phys. Rev. B 82, 144507 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Ricci, A., Joseph, B., Poccia, N., Xu, W., Chen, D., Chu, W.S., Wu, Z.Y., Marcelli, A., Saini, N.L., Bianconi, A.: Supercond. Sci. Technol. 23, 052003 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Dai, X., Le, C.-C., Wu, X.-X., Hu, J.-P.: Chin. Phys. B 25, 077402 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Hulliger, J., Awan, M.A.: J. Comb. Chem. 7, 73 (2005)CrossRefGoogle Scholar
  21. 21.
    Iranmanesh, M., Stir, M., Kirtley, J.R., Hulliger, J.: Chem. Eur. J. 20, 15816 (2014)CrossRefGoogle Scholar
  22. 22.
    Hiroi, Z., Takano, M., Azuma, M., Takeda, Y.: Nature 364, 315 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    Shaked, H., Shimakawa, Y., Hunter, B.A., Hitterman, R.L., Jorgensen, J.D., Han, P.D., Payne, D.A.: Phys. Rev. B 51, 11784 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    Azuma, M., Hiroi, Z., Takano, M., Bando, Y., Takeda, Y.: Nature 356, 775 (1992)ADSCrossRefGoogle Scholar
  25. 25.
    Kawashima, T., Takayama-Muromachi, E.: Physica C 267, 106 (1996)ADSCrossRefGoogle Scholar
  26. 26.
    Jin, C.-Q., Adachi, S., Wu, X.-J., Yamauchi, H., Tanaka, S.: Physica C 223, 238 (1994)ADSCrossRefGoogle Scholar
  27. 27.
    Pérez, D., Hulliger, J.: Rev. Sci. Instrum. 81, 065108 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Tamura, T., Adachi, S., Wu, X.-J., Tatsuki, T., Tanabe, K.: Physica C 277, 1 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    Liu, J., Li, F.H., Wan, Z.H., Fan, H.F., Wu, X.J., Tamura, T., Tanabe, K.: Mater. Transc. 39, 920 (1998)Google Scholar
  30. 30.
    Wu, X.-J., Tamura, T., Adachi, S., Tatsuki, T., Tanabe, K.: Physica C 299, 249 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    Rouillon, T., Provost, J., Hervieu, M., Groult, D., Michel, C., Raveau, B.: Physica C 159, 201 (1989)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • N. D. Zhigadlo
    • 1
  • M. Iranmanesh
    • 1
  • W. Assenmacher
    • 2
  • W. Mader
    • 2
  • J. Hulliger
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of BernBernSwitzerland
  2. 2.Institute of Inorganic ChemistryUniversity of BonnBonnGermany

Personalised recommendations