Advertisement

Fundamental Building Blocks of Strongly Correlated Wave Functions

  • D. K. Sunko
Original Paper

Abstract

The calculation of realistic N-body wave functions for identical fermions is still an open problem in physics, chemistry, and materials science, even for N as small as two. A recently discovered fundamental algebraic structure of many-body Hilbert space allows an arbitrary many-fermion wave function to be written in terms of a finite number of antisymmetric functions called shapes. Shapes naturally generalize the single-Slater-determinant form for the ground state to more than one dimension. Their number is exactly N! d−1 in d dimensions. An efficient algorithm is described to generate all fermion shapes in spaces of odd dimension, which improves on a recently published general algorithm. The results are placed in the context of contemporary investigations of strongly correlated electrons.

Keywords

Strong correlations Many-body wave functions Invariant theory 

Notes

Acknowledgments

I thank D. Svrtan for his help and interest.

References

  1. 1.
    Lazić, P., Sunko, D.K.: EPL (Europhys. Lett.) 112(3), 37011 (2015). doi: 10.1209/0295-5075/112/37011 ADSCrossRefGoogle Scholar
  2. 2.
    Borisenko, S.V., Evtushinsky, D.V., Liu, Z.H., Morozov, I., Kappenberger, R., Wurmehl, S., Buchner, B., Yaresko, A.N., Kim, T.K., Hoesch, M., Wolf, T., Zhigadlo, N.D.: Nat Phys. 12(4), 311 (2016). doi: 10.1038/nphys3594. LetterCrossRefGoogle Scholar
  3. 3.
    Park, H., Millis, A.J., Marianetti, C.A.: Phys. Rev. B 90, 235103 (2014). doi: 10.1103/PhysRevB.90.235103 ADSCrossRefGoogle Scholar
  4. 4.
    Nikšić, G., Kupčić, I., Sunko, D., Barišić, S.: J. Supercond. Novel Magn. 26(8), 2669 (2013). doi: 10.1007/s10948-013-2157-9 CrossRefGoogle Scholar
  5. 5.
    Barišić, O.S., Barišić, S.: J. Supercond. Nov. Magn. 25, 669 (2012). doi: 10.1007/s10948-012-1461-0 CrossRefGoogle Scholar
  6. 6.
    Bianconi, A., Castellano, A.C., De Santis, M., Politis, C., Marcelli, A., Mobilio, S., Savoia, A.: Zeitschrift für Physik B Condensed Matter 67(3), 307 (1987). doi: 10.1007/BF01307254 ADSCrossRefGoogle Scholar
  7. 7.
    Tahir-Kheli, J., Goddard, W.A.: J. Phys. Chem. Lett. 2(18), 2326 (2011). doi: 10.1021/jz200916t CrossRefGoogle Scholar
  8. 8.
    Campi, G., Ricci, A., Poccia, N., Bianconi, A.: J. Supercond. Novel Magn. 27(4), 987 (2014). doi: 10.1007/s10948-013-2434-7 CrossRefGoogle Scholar
  9. 9.
    Bianconi, G.: Phys. Rev. E 85, 061113 (2012). doi: 10.1103/PhysRevE.85.061113 ADSCrossRefGoogle Scholar
  10. 10.
    Tahir-Kheli, J.: New J. Phys. 15(7), 073020 (2013). doi: 10.1088/1367-2630/15/7/073020 ADSCrossRefGoogle Scholar
  11. 11.
    Mirzaei, S.I., Stricker, D., Hancock, J.N., Berthod, C., Georges, A., van Heumen, E., Chan, M.K., Zhao, X., Li, Y., Greven, M., Barišić, N., van der Marel, D.: PNAS 110(15), 5774 (2013). doi: 10.1073/pnas.1218846110 ADSCrossRefGoogle Scholar
  12. 12.
    Chan, M.K., Veit, M.J., Dorow, C.J., Ge, Y., Li, Y., Tabis, W., Tang, Y., Zhao, X., Barišić, N., Greven, M.: Phys. Rev. Lett. 113, 177005 (2014). doi: 10.1103/PhysRevLett.113.177005 ADSCrossRefGoogle Scholar
  13. 13.
    Drozdov, A.P., Eremets, M.I., Troyan, I.A., Ksenofontov, V., Shylin, S.I.: Nature 525(7567), 73 (2015). doi: 10.1038/nature14964. LetterADSCrossRefGoogle Scholar
  14. 14.
    Einaga, M., Sakata, M., Ishikawa, T., Shimizu, K., Eremets, M.I., Drozdov, A.P., Troyan, I.A., Hirao, N., Ohishi, Y.: Nat Phys advance online publication. doi: 10.1038/nphys3760. Letter (2016)
  15. 15.
    Bussmann-Holder, A., Köhler, J., Whangbo, M.H., Bianconi, A., Simon, A.: Novel Supercond. Mater. 2, 37 (2016). doi: 10.1515/nsm-2016-0004 Google Scholar
  16. 16.
    Sunko, D.K.: Phys. Rev. A 93, 062109 (2016). doi: 10.1103/PhysRevA.93.062109 ADSCrossRefGoogle Scholar
  17. 17.
    Sunko, D.K: Fundamental invariants of many-body Hilbert space. Review article, submitted to Modern Physics Letters B (2016)Google Scholar
  18. 18.
    Derksen, H., Kemper, G.: Computational Invariant Theory. Springer Berlin Heidelberg (2002)Google Scholar
  19. 19.
    Loh, E.Y., Gubernatis, J.E., Scalettar, R.T., White, S.R., Scalapino, D.J., Sugar, R.L.: Phys. Rev. B 41, 9301 (1990). doi: 10.1103/PhysRevB.41.9301 ADSCrossRefGoogle Scholar
  20. 20.
    Tomonaga, S.: Progress Theor. Phys. 5(4), 544 (1950). doi: 10.1143/ptp/5.4.544 ADSCrossRefGoogle Scholar
  21. 21.
    Yamanaka, S., Koizumi, K., Kitagawa, Y., Kawakami, T., Okumura, M., Yamaguchi, K.: Int. J. Quantum Chem. 105(6), 687 (2005). doi: 10.1002/qua.20784 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceUniversity of ZagrebZagrebCroatia

Personalised recommendations