Journal of Superconductivity and Novel Magnetism

, Volume 29, Issue 12, pp 3081–3086 | Cite as

Shape-Resonant Superconductivity in Nanofilms: from Weak to Strong Coupling

  • Marco Cariglia
  • Alfredo Vargas-Paredes
  • Mauro M. Doria
  • Antonio Bianconi
  • Milorad V. Milošević
  • Andrea PeraliEmail author
Original Paper


Ultrathin superconductors of different materials are becoming a powerful platform to find mechanisms for enhancement of superconductivity, exploiting shape resonances in different superconducting properties. Here, we evaluate the superconducting gap and its spatial profile, the multiple gap components, and the chemical potential, of generic superconducting nanofilms, considering the pairing attraction and its energy scale as tunable parameters, from weak to strong coupling, at fixed electron density. Superconducting properties are evaluated at mean field level as a function of the thickness of the nanofilm, in order to characterize the shape resonances in the superconducting gap. We find that the most pronounced shape resonances are generated for weakly coupled superconductors, while approaching the strong coupling regime the shape resonances are rounded by a mixing of the subbands due to the large energy gaps extending over large energy scales. Finally, we find that the spatial profile, transverse to the nanofilm, of the superconducting gap acquires a flat behavior in the shape resonance region, indicating that a robust and uniform multigap superconducting state can arise at resonance.


Shape resonance Ultrathin superconductivity Lifshitz transitions BCS-BEC crossover 



We acknowledge D. Valentinis, D. Van der Marel, and C. Berthod for useful discussions. A. Ricci is also acknowledged for his comments on the experimental detection of the predictions of this paper. A. Bianconi acknowledges financial support from Superstripes non-profit organization. M. Cariglia acknowledges CNPq support from project (205029 / 2014-0) and FAPEMIG support from project APQ-02164-14. M.M. Doria acknowledges CNPq support from funding (23079.014992 / 2015-39). M.V. Milošević acknowledges support from Research Foundation - Flanders (FWO). A. Perali acknowledges financial support from the University of Camerino under the project FAR “Control and enhancement of superconductivity by engineering materials at the nanoscale”. All authors acknowledge the collaboration within the MultiSuper Network ( for exchange of ideas and suggestions.


  1. 1.
    Ge, J.F., Liu, Z. L., Liu, C., Gao, C.L., Qian, D., Xue, O.K., Liu, Y., Jia, J. F.: Superconductivity above 100 K in single-layer FeSe films on doped S r T i O 3. Nat. Mater. 14(5pp) (2015)Google Scholar
  2. 2.
    Xue, M., Chen, G., Yang, H., Zhu, Y., Wang, D., He, J., Cao, T.: Superconductivity in Potassium-Doped Few-Layer Graphene. J. Am. Chem. Soc 134(4pp), 15 (2012)Google Scholar
  3. 3.
    Shi, X., Han, Z.-Q., Peng, X.-L., Richard, P., Qian, T., Wu, X.-X., Qiu, M.-W., Wang, S.C., Hu, J.P., Sun, Y.-J., Ding, H.: Enhanced superconductivity accompanying a Lifshitz transition in electron-doped FeSe monolayer. arXiv:1606.01470 (2016)
  4. 4.
    Perali, A., Pieri, P., Strinati, G.C.: Extracting the condensate density from projection experiments with Fermi gases. Phys. Rev. Lett. 95(4pp), 010407 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    Palestini, F., Perali, A., Pieri, P., Strinati, G.C.: Dispersions, weights, and widths of the single-particle spectral function in the normal phase of a Fermi gas. Phys. Rev. B 85(17pp), 024517 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Lubashevsky, Y., Lahoud, E., Chashka, K., Podolsky, D., Kanigel, A.: Shallow pockets and very strong coupling superconductivity in FeSe xTe 1−x. Nat. Phys. 8(4pp) (2012)Google Scholar
  7. 7.
    Kasahara, S., Watashige, T., Hanaguri, T., Kohsaka, Y., Yamashita, T., Shimoyama, Y., Mizukami, Y., Endo, R., Ikeda, H., Aoyama, K., Terashima, T., Uji, S., Wolf, T., Lhneysenn, H.v., Shibauchi, T., Matsuda, Y.: Field-induced superconducting phase of FeSe in the BCS-BEC cross-over. PNAS 111(5pp), 46 (2014)Google Scholar
  8. 8.
    Okazaki, K., Ito, Y., Ota, Y., Kotani, Y., Shimojima, T., Kiss, T., Watanabe, S., Chen, C.-T., Niitaka, S., Hanaguri, T., Takagi, H., Chainani, A., Shin, S.: Superconductivity in an electron band just above the Fermi level: possible route to BCS-BEC superconductivity. Sci. Rep. 4(6pp), 4109 (2014)ADSGoogle Scholar
  9. 9.
    Guidini, A., Perali, A.: Band-edge BCS-BEC crossover in a two-band superconductor: physical properties and detection parameters. Supercond. Sci. Technol. 27(10pp), 124002 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Guo, Y., Zhang, Y.-F., Bao, X.-Y., Han, T.-Z., Tang, Z., Zhang, L.-X., Zhu, W.-G., Wang, E.G., Niu, Q., Qiu, Z.Q., Jia, J.-F., Zhao, Z.-X., Xue, Q.-K.: Superconductivity modulated by quantum size effects. Science 306(3pp), 1915 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Eom, D., Qin, S., Chou, M.-Y., Shih, C.-K.: Persistent superconductivity in ultrathin Pb films: a scanning tunneling spectroscopy study. Phys. Rev. Lett. 96(4pp), 027005 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Qin, S., Kim, J., Niu, Q., Shih, C.-K.: Superconductivity at the two-dimensional limit. Science 324 (4pp), 1314 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Shanenko, A.A., Croitoru, M.D., Zgirski, M., Peeters, F.M., Arutyunov, K.: Size-dependent enhancement of superconductivity in nanowires. Phys. Rev. B 74(4pp), 052502 (2006). And reference thereinADSCrossRefGoogle Scholar
  14. 14.
    Altomare, F., Chang, A.M.: One-Dimensional Superconductivity in Nanowires, WILEY-VCH. Weinheim, Germany (2013)CrossRefGoogle Scholar
  15. 15.
    Shanenko, A.A., Croitoru, M.D., Peeters, F.M.: Nanoscale superconductivity: nanowires and nanofilms. Physica C 468(6pp) (2008)Google Scholar
  16. 16.
    Blatt, J.M., Thompson, C.J.: Shape resonances in superconducting thin films. Phys. Rev. Lett. 10(3pp), 8 (1963)Google Scholar
  17. 17.
    Thompson, C.J., Blatt, J.M.: Shape resonances in superconductors - II simplified theory. Phys. Lett. 5 (4pp), 1 (1963)ADSGoogle Scholar
  18. 18.
    Shanenko, A.A., Aguiar, J.A., Vagov, A., Croitoru, M.D., Milošević, M.V.: Atomically flat superconducting nanofilms: multiband properties and mean-field theory. Supercond. Sci. Technol. 28(16pp), 05001 (2015)Google Scholar
  19. 19.
    Milosevic, M.V., Perali, A.: Emergent phenomena in multicomponent superconductivity: an introduction to the focus issue. Supercond. Sci. Tech. 28(4pp), 060201 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Perali, A., Bianconi, A., Lanzara, A., Saini, N.L.: The gap amplification at a shape resonance in a superlattice of quantum stripes: a mechanism for high Tc. Solid State Comm 100(6pp), 3 (1996)Google Scholar
  21. 21.
    García-García, A.M., Urbina, J.D., Yuzbashyan, E.A., Richter, K., Altshuler, B.L.: Bardeen-Cooper-Schrieffer Theory of finite-size superconducting metallic grains. Phys. Rev. Lett. 100(4pp), 187001 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Bose, S., García-García, A.M., Ugeda, M.M., Urbina, J.D., Michaelis, C.H., Brihuega, I., Kern, K.: Observation of shell effects in superconducting nanoparticles of Sn. Nat. Mater. 9(5pp) (2010)Google Scholar
  23. 23.
    Mayoh, J., García-García, A.M.: Strong enhancement of bulk superconductivity by engineered nanogranularity. Phys. Rev. B 90(10pp), 134513 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    Mayoh, J., García-García, A. M.: Number theory, periodic orbits, and superconductivity in nanocubes. Phys. Rev. B 90(9pp), 014509 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Bianconi, A., Valletta, A., Perali, A., Saini, N.L.: High Tc superconductivity in a superlattice of quantum stripes. Solid State Comm. 102(6pp), 5 (1997)Google Scholar
  26. 26.
    Bianconi, A., Valletta, A., Perali, A., Saini, N.L.: Superconductivity of a striped phase at the atomic limit. Physica C 296(12pp) (1998)Google Scholar
  27. 27.
    Bianconi, A.: Quantum materials: shape resonances in superstripes. Nature Phys. 9(2pp) (2013)Google Scholar
  28. 28.
    Fretto, M., Enrico, E., De Leo, N., Boarino, L., Rocci, R., Lacquaniti, V.: Nano SNIS Junctions Frabicated by 3D FIB Sculpting for Application to Digital Electronics. IEEE Trans. Appl. Supercond. 23, 1101104 (2013)CrossRefGoogle Scholar
  29. 29.
    Doria, M.M., Cariglia, M., Perali, A.: Multigap superconductivity and interaction driven resonances in superconducting nanofilms with an inner potential barrier. arXiv:1606.06018 (2016)
  30. 30.
    Innocenti, D., Poccia, N., Ricci, A., Valletta, A., Caprara, S., Perali, A., Bianconi, A.: Resonant and crossover phenomena in a multiband superconductor: tuning the chemical potential near a band edge. Phys. Rev. B 82(12pp), 184528 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    Perali, A., Innocenti, D., Valletta, A., Bianconi, A.: Anomalous isotope effect near a 2.5 Lifshitz transition in a multi-band multi-condensate superconductor made of a superlattice of stripes. Supercond. Sci. Technol. 25(7pp), 124002 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    Chen, Y.J., Shanenko, A.A., Perali, A., Peeters, F.M.: Superconducting nanofilms: molecule-like pairing induced by quantum confinement. J. Phys. Condens. Matter 24(8pp), 185701 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    Shanenko, A.A., Croitoru, M.D., Vagov, A.V., Axt, V.M., Perali, A., Peeters, F.M.: Atypical BCS-BEC crossover induced by quantum-size effects. Phys. Rev. A 86(7pp), 033612 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Guidini, A., Flammia, L., Milošević, M.V., Perali, A.: BCS-BEC crossover in quantum confined superconductors. J. Supercond. Nov. Magn. 29(5pp), 711 (2016)CrossRefGoogle Scholar
  35. 35.
    Perali, A., Castellani, C., Di Castro, C., Grilli, M., Piegari, E., Varlamov, A.A.: Two-gap model for underdoped cuprate superconductors. Phys. Rev. B 62(4pp), R9295(R) (2000)ADSCrossRefGoogle Scholar
  36. 36.
    Marsiglio, F., Pieri, P., Perali, A., Palestini, F., Strinati, G.C.: Pairing effects in the normal phase of a two-dimensional Fermi gas. Phys. Rev. B 91(10pp), 054509 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    Anderson, P.W.: Theory of dirty superconductors. J. Phys. Chem. Solids 11(5pp), 26 (1959)ADSCrossRefzbMATHGoogle Scholar
  38. 38.
    De Gennes, P.G.: Superconductivity of Metals and Alloys. Benjamin, New York (1966)zbMATHGoogle Scholar
  39. 39.
    Tanaka, K., Marsiglio, F.: Anderson prescription for surfaces and impurities. Phys. Rev. B 62, 5345 (2000)ADSCrossRefGoogle Scholar
  40. 40.
    Suhl, H., Matthias, B.T., Walker, L.R.: Bardeen-Cooper-Schrieffer theory of superconductivity in the case of overlapping bands. Phys. Rev. Lett. 3(3pp), 12 (1959)zbMATHGoogle Scholar
  41. 41.
    Valentinis, D., van der Marel, D., Berthod, C.: Rise and fall of shape resonances in thin films of BCS superconductors. arXiv:1601.04927v1 (2016)
  42. 42.
    Valentinis, D., van der Marel, D., Berthod, C.: BCS superconductivity near the band edge: exact results for one and several bands. Phys. Rev. B 94(11pp), 024511 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    Bendele, M., Barinov, A., Joseph, B., Innocenti, D., Iadecola, A., Bianconi, A., Takeya, H., Mizuguchi, Y., Takano, Y., Noji, T., Hatakeda, T., Koike, Y., Horio, M., Fujimori, A., Ootsuki, D., Mizokawa, T., Saini, N. L.: Spectromicroscopy of electronic phase separation in KxFe2ySe2 superconductor. Sci. Rep. 4(5pp), 5592 (2014)ADSGoogle Scholar
  44. 44.
    Razado-Colambo, I., Avila, J., Nys, J.P., Chen, C., Wallart, X., Asensio, M.C., Vignaud, D.: NanoARPES of twisted bilayer graphene on SiC: absence of velocity renormalization for small angles. Sci. Rep. 6 (7pp), 27261 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    Brur, J., Maggio-Aprile, I., Jenkins, N., Risti, Z., Erb, A., Berthod, C., Fischer, O., Renner, C.: Revisiting the vortex-core tunnelling spectroscopy in YBa2Cu3O7 −δ. Nature Commun. 7(6pp), 11139 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Marco Cariglia
    • 1
    • 2
  • Alfredo Vargas-Paredes
    • 2
    • 3
  • Mauro M. Doria
    • 2
    • 4
  • Antonio Bianconi
    • 5
  • Milorad V. Milošević
    • 3
  • Andrea Perali
    • 2
    • 6
    Email author
  1. 1.Departamento de FísicaUniversidade Federal de Ouro PretoOuro PretoBrazil
  2. 2.School of Pharmacy, Physics UnitUniversity of CamerinoCamerinoItaly
  3. 3.Departement FysicaUniversiteit AntwerpenAntwerpenBelgium
  4. 4.Instituto de FísicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  5. 5.Rome International Center for Materials Science Superstripes (RICMASS)RomeItaly
  6. 6.INFN Sezione di PerugiaPerugiaItaly

Personalised recommendations