Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 29, Issue 11, pp 2783–2791 | Cite as

Effect of the Grain-boundary Misorientation Distribution on the Intergranular Voltage Relaxation of Bi1.65Pb0.35Sr2Ca2Cu3 O 10+δ Ceramic Samples

  • E. Govea-AlcaideEmail author
  • I. García-Fornaris
  • P. A. Suzuki
  • R. F. Jardim
Original Paper

Abstract

The impact of the grain boundary misorientation distribution (GBMD) on the intergranular voltage relaxation (Vt) curves at zero applied magnetic field in Bi1.65Pb0.35Sr2Ca2Cu3 O 10+δ (Bi-2223) ceramic samples has been investigated. Changes in the GMBD were realized by subjecting powders of Bi-2223 to two different uniaxial compacting pressures (UCP) before the last heat treatment of the samples. The GBMD was then determined from X-ray rocking curves and revealed significant differences between intergranular media of the specimens. It was found that the UCP results in a two-time reduction in the population of high-angle grain boundaries (𝜃 > 12) while the orientation homogeneity of the grain boundaries rises ∼ 30 %, indicating an improvement of the degree of texture of the materials. Such changes are mirrored in the behavior of the Vt curves which are explained by invoking differences in the rearrangement of the transport current driven by the angular dependence of the critical current density along grain boundaries. Numerical simulations of the Vt curves support the experimental Vt results and further suggest the occurrence of current localization in conductive paths within the materials.

Keywords

Bi-based cuprates Grain boundaries Misorientation distribution Transport relaxation 

Notes

Acknowledgments

The authors are grateful for the financial support provided by the Brazil’s agencies FAPESP (Grant No. 2013/07296-2 and 2014/19245-6), CNPq (Grant No. 2014/444712-3), and CAPES (Grant No. 2012/157).

References

  1. 1.
    Malozemoff, A.P.: MRS Bull. 36, 601 (2011)CrossRefGoogle Scholar
  2. 2.
    Yamasaki, H., Endo, K.: Supercond. Sci. Technol. 27, 025014 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    Hecher, J., Baumgartner, T., Weiss, J.D., Tarantini, C., Yamamoto, A., Jiang, J., Hellstrom, E.E., Larbalestier, D.C., Eisterer, M.: Supercond. Sci. Technol. 29, 025004 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    Dimos, D., Chaudhuri, P., Mannhart, J.: Phys. Rev. B 41, 4038 (1990)ADSCrossRefGoogle Scholar
  5. 5.
    Larbalestier, D., Gurevich, A., Feldmann, D.M., Polyanskii, A.: Nature 414, 368 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Goyal, A., Specht, E.D., Kroeger, D.M., Mason, T.A.: Appl. Phys. Lett. 68, 711 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    Goyal, A., Specht, E.D., Kroeger, D.M., Mason, T.A., Dingley, D.J., Riley, G.N., Rupich, M.W.: Appl. Phys. Lett. 66, 2903 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    Tan, T. T., Li, S., Cooper, H., Gao, W., Liu, H.K., Dou, S.X.: Supercond. Sci. Technol. 14, 471 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    Muné, P., Govea-Alcaide, E., Jardim, R.F.: Phys. C 384, 491 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    Govea-Alcaide, E., García-Fornaris, I., Muné, P., Jardim, R.F.: Eur. Phys. J. B 58, 373 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Graser, S., Hirschfeld, P.J., Kopp, T., Gutser, R., Andersen, B.M., Mannhart, J.: Nature 6, 609 (2010)Google Scholar
  12. 12.
    Gao, Z., Togano, K., Matsumoto, A., Kumakura, H.: Sci. Rep. 4, 4065 (2014). (and references therein)ADSGoogle Scholar
  13. 13.
    Hilgenkamp, H., Mannhart, J.: Rev. Mod. Phys. 74, 485 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    Díaz, A., Maza, J., Vidal, F.: Phys. Rev. B 55, 1209 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    Larbalestier, D.C., Cooley, L.D., Rikel, M.O., Polyanskii, A.A., Jiang, J., Patnaik, S., Cai, X.Y., Feldmann, D.M., Gurevich, A., Squitieri, A.A., Naus, M.T., Eom, C.B., Hellstrom, E.E., Cava, R.J., Regan, K.A., Rogado, N., Hayward, M.A., He, T., Slusky, J.S., Khalifah, P., Inumaru, K., Haas, M.: Nature 410, 186 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    Durrell, J.H., Eom, C.-B., Gurevich, A., Hellstrom, E.E., Tarantini, C., Yamamoto, A., Larbalestier, D.C.: Rep. Prog. Phys. 74, 124511 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Ji, L., Rzchowski, M.S., Anand, N., Tinkham, M.: Phys. Rev. B 47, 470 (1993)ADSCrossRefGoogle Scholar
  18. 18.
    Palau, A., Puig, T., Obradors, X., Pardo, E., Navau, C., Sanchez, A., Usoskin, A., Freyhardt, H.C., Fernández, L., Holzapfel, B., Feenstra, R.: Appl. Phys. Lett. 84, 230 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    Govea-Alcaide, E, Jardim, R.F., Muné, P.: Phys. C 423, 152 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Zeimetz, B., Glowacki, B.A., Evetts, J.E.: Eur. Phys. J. B 29, 359 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    Foltyn, S.R., Civale, L., MacManus-Driscoll, J.L., Jia, Q.X., Maiorov, B., Wang, H., Maley, M.: Nature 6, 631 (2007)CrossRefGoogle Scholar
  22. 22.
    Tampieri, A., Celotti, G., Guicciardi, S., Melandri, C.: Mater. Chem. Phys. 42, 188 (1995)CrossRefGoogle Scholar
  23. 23.
    Pérez-Acosta, L., Govea-Alcaide, E., Noudem, J.G., Machado, I.F., Masunaga, S.H., Jardim, R.F.: Ceram. Int. 42, 13248 (2016)CrossRefGoogle Scholar
  24. 24.
    Larbalestier, D.C., Jiang, J., Trociewitz, U.P., Kametani, F., Scheuerlein, C., Dalban-Canassy, M., Matras, M., Chen, P., Craig, N.C., Lee, P.J., Hellstrom, E.E.: Nature 13, 375 (2014)CrossRefGoogle Scholar
  25. 25.
    Kiliç, K., Kiliç, A., Yetiş, H., Çetin, O.: J. Appl. Phys. 95, 1924 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    Kiliç, K., Kiliç, A., Yetiş, H., Çetin, O.: Eur. Phys. J. B 46, 177 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    Olutaş, M., Yetiş, H., Altinkok, A., Kiliç, A., Kiliç, K.: Physica C 468, 1447 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    Altinkok, A., Kiliç, K., Kiliç, A., Yetiş, H., Olutaş, M.: IEEE Trans. App. Supercond. 19, 2978 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    Olutaş, M., Kiliç, K., Kiliç, A., Kiliç, A.: J. Supercond. Nov. Magn. 25, 753 (2012)CrossRefGoogle Scholar
  30. 30.
    García-Fornaris, I., Muné, P., Suzuki, P.A., Alberteris-Campos, M., Jardim, R.F., Govea-Alcaide, E.: Phys. C 470, 269 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    García-Fornaris, I., Planas, A.A., Muné, P., Jardim, R.F., Govea-Alcaide, E.: J. Supercond. Nov. Magn. 23, 1511 (2010)CrossRefGoogle Scholar
  32. 32.
    Rutter, N.A., Glowacki, B.A., Evetts, J.E.: Supercond. Sci. Technol. 13, L25 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    García-Fornaris, I., Govea-Alcaide, E., Muné, P., Jardim, R.F.: Phys. Stat. Sol. (a) 204, 805 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    Müller, K.H., Matthews, D.N.: Phys. C 206, 275 (1993)ADSCrossRefGoogle Scholar
  35. 35.
    Press, W.H., Flannery, B.P., Teukolsky, S.A.: Vetterling, W.T.: Numerical Recipes: The Art of Scientific Computing, p 22. (Cambrige University Press) (1992)Google Scholar
  36. 36.
    Jardim, R.F., Ben-Dor, L., Stroud, D., Maple, M.B.: Phys. Rev. B 50, 10080 (1994)ADSCrossRefGoogle Scholar
  37. 37.
    Karimov, Y.S., Kikin, A.D.: Phys. C 169, 50 (1990)ADSCrossRefGoogle Scholar
  38. 38.
    Lang, K.M., Madhavan, V., Hoffman, J.E., Hudson, E.W., Eisaki, H., Uchida, S., Davis, J.C.: Nature 415, 412 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    Carneiro, A.S., Jardim, R.F., Fonseca, F.C.: Phys. Rev. B 73, 012410 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • E. Govea-Alcaide
    • 1
    Email author
  • I. García-Fornaris
    • 1
  • P. A. Suzuki
    • 2
  • R. F. Jardim
    • 3
  1. 1.Departamento de Física - Matemática, Facultad de Ciencias Informáticas, Naturales y ExactasUniversidad de GranmaBayamoCuba
  2. 2.Escola de Engenharia de LorenaUniversidade de São PauloLorenaBrazil
  3. 3.Instituto de FísicaUniversidade de São PauloSão PauloBrazil

Personalised recommendations