Probing Spontaneous Spin Magnetization and Two-Phase State in Two-Dimensional Correlated Electron System

  • V. M. PudalovEmail author
  • L. A. Morgun
  • A. Yu. Kuntsevich
Original Paper


Strongly interacting two-dimensional (2D) carrier system has a tendency to spontaneous spin magnetization and mass divergence. Numerous experiments aimed to reveal these instabilities were not entirely convincing. In particular, spin susceptibility of itinerant electrons, determined from quantum oscillations, remains finite at the critical density of the 2D metal-insulator transition (MIT), n = n c . In contrast, the susceptibility and effective mass determined from high field magnetotransport were reported to diverge. Later, it became clear that as interactions grow, the homogeneous 2D Fermi liquid breaks into a two phase state which hampers interpretation of the experimental data. The thermodynamic magnetization measurements have revealed spontaneous formation of the spin-polarized collective electron droplets (“nanomagnets”) in the correlated 2D Fermi liquid, while the spin susceptibility of itinerant electrons in the surrounding 2D “Fermi sea” remains finite. Here, we report how the non Fermi-liquid two-phase state (dilute ferromagnet) reveals itself in magnetotransport and zero field transport. We found in the correlated 2D system a novel energy scale T <T F . At TT the in-plane field magnetotransport and zero field transport exhibit features. Finally, in thermodynamic magnetization, the spin susceptibility per electron, χ/ n changes sign at TT . All three notable temperatures are close to each other, behave critically, \( \propto (n-n_{c})\); we associate, therefore, T with a novel energy scale caused by interactions in the two-phase 2DE system.


Strongly correlated electrons Two-dimensional system Spin magnetization Magnetotransport 



VMP acknowledges support by Russian Science Foundation (No. 14-12-00879). LAM acknowledges Russian Foundation for Basic research (Nos. 14-02-31697 and 15-02-07715). The measurements have been done using research equipment of the Shared facility Center at LPI.


  1. 1.
    Attaccalite, C., Moroni, S., Gori-Giorgi, P., Bachelet, G.B.: Phys. Rev. Lett. 88, 256601 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    Teneh, N., Kuntsevich, A.Yu., Pudalov, V.M., Reznikov, M.: Phys. Rev. Lett. 109, 226403 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    Prus, O., Yaish, Y., Reznikov, M., Sivan, U., Pudalov, V. M.: Phys. Rev. B 67, 205407 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    Reznikov, M., Kuntsevich, A.Yu., Teneh, N., Pudalov, V.M.: JETP Lett. 92, 470 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    All measurements have been done with (100) Si-MOS samples: (i) of the high mobility ( μ=(2−3)m 2/Vs) and, for comparison, of the low mobility ( =(0.1−0.2)m 2/Vs).Google Scholar
  6. 6.
    Zala, G., Narozhny, B.N., Aleiner, I.L.: Phys. Rev. B 65, 020201 (2001)CrossRefGoogle Scholar
  7. 7.
    Knyazev, D.A., Omelyanovskii, O.E., Pudalov, V.M., Burmistrov, I.S.: Phys. Rev. Lett. 100, 046405 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Kravchenko, S.V., Mason, W.E., Bowker, G.E., Furneaux, J.E., Pudalov, V.M., D’Iorio, M.: Phys. Rev. B 51, 7038 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    Pudalov, V.M.: Pis’ma v ZhETF 66, 168 (1997). [JETP Lett. 66, 175 (1997)]ADSGoogle Scholar
  10. 10.
    Morgun, L.A., Pudalov, V.M., Kunsevich, A.Yu.: Phys. Rev. B 93, 235145 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    Altshuler, B.L., Maslov, D.L., Pudalov, V.M.: Phys. E. 9(2), 209 (2001)CrossRefGoogle Scholar
  12. 12.
    Altshuler, B.L., Maslov, D.L., Pudalov, V.M.: Phys. Stat. Sol. (b) 218, 193 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    Pudalov, V.M., Brunthaler, G., Prinz, A., Bauer, G.: Phys. E. 3, 79 (1998)CrossRefGoogle Scholar
  14. 14.
    Zala, G., Narozhny, B.N., Aleiner, I.L.: Phys. Rev. B 64, 214204 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    Pudalov, V.M., Gershenson, M.E., Kojima, H., et al.: Phys. Rev. Lett. 88(19), 196404 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    Klimov, N.N., Knyazev, D.A., Omel’yanovskii, O.E., Pudalov, V.M., Kojima, H., Gershenson, M.E.: Phys.Rev. B 78, 195308 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Pudalov, V.M., Gershenson, M.E., Kojima, H., Brunthaler, G., Prinz, A., Bauer, G.: Phys. Rev. Lett. 91, 126403 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Brunthaler, G., Prinz, A., Bauer, G., Pudalov, V.M.: Phys. Rev. Lett. 87, 096802 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    Kornilov, A.V., Pudalov, V.M., Kitaoka, Y., Ishida, K., Zheng, G.Q., Mito, T., Qualls, J.S.: Phys. Rev. B 69(22), 224404 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    Kornilov, A.V., Pudalov, V.M., Kitaoka, Y., Ishida, K., Mito, T., Brooks, J.S., Qualls, J.S., Perenboom, J.A.A.J., Tateiwa, N., Kobayashi, T.C.: Phys. Rev. B 65, 060404 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    Pudalov, V.M., Brunthaler, G., Prinz, A., Bauer, G.: JETP Lett. 68, 534 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.P.N. Lebedev Physical Institute of RASMoscowRussia
  2. 2.National Research University Higher School of EconomicsMoscowRussia
  3. 3.Moscow Institute of Physics and TechnologyMoscowRussia

Personalised recommendations