Interface Superconductivity in Cuprates Defies Fermi-Liquid Description

  • Zoran Radović
  • Mihajlo Vanević
  • Jie Wu
  • Anthony T. Bollinger
  • Ivan Božović
Original Paper
  • 192 Downloads

Abstract

La2−x Sr x CuO4/La2CuO4 bilayers show interface superconductivity that originates from accumulation and depletion of mobile charge carriers across the interface. Surprisingly, the doping level can be varied broadly (within the interval 0.15<x<0.47) without affecting the transition temperature, which stays essentially constant and equal to that in optimally doped material, T c ≈ 40 K. We argue that this finding implies that doping up to the optimum level does not shift the chemical potential, unlike in ordinary Fermi liquids. We discuss possible physical scenarios that can give doping-independent chemical potential in the pseudogap regime: electronic phase separation, formation of charge density waves, strong Coulomb interactions, or self-trapping of mobile charge carriers.

Keywords

High-temperature superconductors Interface superconductivity Chemical potential Fermi liquid 

Notes

Acknowledgments

The experimental work was done by J.W., A.T.B. and I.B. at BNL and was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. I.B. was supported in part by the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4410. Z.R. and M.V. were supported by the Serbian Ministry of Science, Project No. 171027.

References

  1. 1.
    Eckstein, J.N., Bozovic, I., Schlom, D.G., Harris Jr., J.S.: Growth of superconducting Bi2Sr2Can−1CunOx thin films by atomically layered epitaxy. J. Cryst. Growth 111, 973–977 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    Bozovic, I., Eckstein, J.N., Virshup, G.F.: Superconducting oxide multilayers and superlattices: physics, chemistry, and nano-engineering. Phys. C 235–240, 178–181 (1994)CrossRefGoogle Scholar
  3. 3.
    Bozovic, I., Logvenov, G., Belca, I., Narimbetov, B., Sveklo, I.: Epitaxial strain and superconductivity in La2−xSrxCuO4 thin films. Phys. Rev. Lett. 89, 107001 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    Gozar, A., Logvenov, G., Fitting Kourkoutis, L., Bollinger, A.T., Giannuzzi, L.A., Muller, D.A., Božović, I.: Interface superconductivity between a metal and a Mott insulator. Nature 455, 782 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Bozovic, I.: Atomic-layer engineering of superconducting oxides: yesterday, today, tomorrow. IEEE Trans. Appl. Supercond. 11, 2686–2695 (2001)CrossRefGoogle Scholar
  6. 6.
    Logvenov, G., Gozar, A., Bozovic, I.: High-temperature superconductivity in a single copper-oxygen plane. Science 326, 699 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Bollinger, A.T., Dubuis, G., Yoon, J., Pavuna, D., Misewich, J., Bozovic, I.: Superconductor-insulator transition in La2−xSrxCuO4 at the pair quantum resistance. Nature 472, 458 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Yacoby, Y., Zhou, H., Pindak, R., Božović, I.: Atomic-layer synthesis and imaging uncover broken inversion symmetry in La,2−xSrxCuO4 films. Phys. Rev. B 87, 014108 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Smadici, S., Lee, J.C.T., Wang, S., Abbamonte, P., Logvenov, G., Gozar, A., Deville Cavellin, C., Bozovic, I.: Superconducting transition at 38 K in insulating-overdoped La2CuO4- La1.64Sr0.36CuO4 superlattices: evidence for interface electronic redistribution from resonant soft X-ray scattering. Phys. Rev. Lett. 102, 107004 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Kivelson, S.A.: Making high-Tc higher: a theoretical proposal. Physica B 318, 61 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Wu, J., Pelleg, O., Logvenov, G., Bollinger, A.T., Sun, Y., Boebinger, G.S., Vanević, M., Radović, Z., Božović, I.: Anomalous independence of interface superconductivity on carrier density. Nat. Mater. 12, 877 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Chen, C.Y., et al.: Frequency and magnetic-field dependence of the dielectric constant and conductivity of La2CuO4+y. Phys. Rev. B 43, 392–401 (1991)ADSCrossRefGoogle Scholar
  13. 13.
    Ino, A., Mizokawa, T., Fujimori, A., Tamasaku, K., Eisaki, H., Uchida, S., Kimura, T., Sasagawa, T., Kishio, K.: Chemical potential shift in overdoped and underdoped La2−xSrxCuO4. Phys. Rev. Lett. 79, 2101 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    Bozovic, I., Logvenov, G., Verhoeven, M.A.J., Caputo, P., Goldobin, E., Geballe, T.H.: No mixing of superconductivity and antiferromagnetism in a high-temperature superconductor. Nature 422, 873 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    van der Marel, D.: Interface superconductivity: pinning the critical temperature. Nature Mater. 12, 875–876 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Misawa, T., Imada, M.: Origin of high-Tc superconductivity in doped Hubbard models and their extensions: roles of uniform charge fluctuations. Phys. Rev. B 90, 115137 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Kim, J.H., Bozovic, I., Eom, C.B., Geballe, T.H., Harris Jr., J.S.: Study of optical plasmons in La2−xSrxCu2O4. Phys. C 174, 435–439 (1991)ADSCrossRefGoogle Scholar
  18. 18.
    Božović, I., He, X., Wu, J., Bollinger, A.T.: Dependence of critical temperature in overdoped copper oxides on superfluid density. Nature (2016). in pressGoogle Scholar
  19. 19.
    Doiron-Leyraud, N., Proust, C., LeBoeuf, D., Levallois, J., Bonnemaison, J.B., Liang, R., Bonn, D.A., Hardy, W.N., Taillefer, L.: Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor. Nature 447, 565 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    Jaudet, C., et al.: De Haas–van Alphen oscillations in the underdoped high-temperature superconductor YBa2Cu3O6.5. Phys. Rev. Lett. 100, 187005 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Hosseini, A., et al.: Microwave spectroscopy of thermally excited quasiparticles in YBa2Cu3O6.99. Phys. Rev. B 60, 1349–1359 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    Blackburn, E.: X-ray diffraction studies of charge density waves in cuprate supercon ductors: a brief review. Physica B 460, 132–135 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Kotliar, G., Vollhardt, D.: Strongly correlated materials: insights from dynamical mean-field theory. Phys. Today 57, 53–59 (2004)CrossRefGoogle Scholar
  24. 24.
    Zhao, G.M., Hunt, M.B., Keller, H., Muller, K.A.: Evidence for polaronic supercarriers in the copper oxide superconductors La2−xSrxCuO4. Nature 385, 236–239 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    Bishop, A.R., Mihailovic, D., de Leon, J.M.: Signatures of mesoscopic Jahn-Teller polaron inhomogeneities in high-temperature superconductors. J. Phys. Cond. Mat. 15, L169–L175 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    Rosch, O., Gunnarsson, O., Zhou, X. J., Yoshida, T., Sasagawa, T., Fujimori, A., Hussain, Z., Shen, Z.-X., Uchida, S.: Polaronic behavior of undoped high-Tc cuprate superconductors from angle-resolved photoemission spectra. Phys. Rev. Lett. 95, 227002 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    Bussmann-Holder, A., Keller, H.: Polaron formation as origin of unconventional isotope effects in cuprate superconductors. Europhys. J. B. 44, 487–490 (2005)ADSGoogle Scholar
  28. 28.
    Zhou, W., Xing, X.Z., Zhao, H.J., Shi, Z.X., Yamaura, K.: Anomalous carrier density independent superconductivity in iron pnictides. arXiv:1604.02839v1 (2016)

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Zoran Radović
    • 1
  • Mihajlo Vanević
    • 1
  • Jie Wu
    • 2
  • Anthony T. Bollinger
    • 2
  • Ivan Božović
    • 2
    • 3
  1. 1.Department of PhysicsUniversity of BelgradeBelgradeSerbia
  2. 2.Condensed Matter Physics and Materials Science DivisionBrookhaven National LaboratoryUptonUSA
  3. 3.Department of Applied PhysicsYale UniversityNew HavenUSA

Personalised recommendations