Journal of Superconductivity and Novel Magnetism

, Volume 29, Issue 11, pp 2771–2775 | Cite as

Effect of the FeSe Precursor on the Superconductivity of K x Fe2 y Se 2

  • Ya-jing CuiEmail author
  • Xiao-feng Wang
  • Ping-yuan Li
  • Yong-liang Chen
  • Yong Zhao
Original Paper


Three single crystals of K x Fe2−y Se2 with nominal compositions of K0.8Fe2Se2 were prepared by self-flux method in one step or two steps, employing different FeSe precursors as raw materials. Depending on the heat treatment times of FeSe precursors, these three K x Fe2−y Se2 crystals are symbolized by KFeSe-0, KFeSe-1, and KFeSe-2, respectively. The onset superconducting transition temperature for KFeSe-1 and KFeSe-2 is around 44 K which is much higher than that of 34.8 K for KFeSe-0. According to the structural and transport properties, it is inferred that the higher-onset transition temperature at 44 K might be derived from another iron-rich K x Fe2−y Se2 phase. The employment of FeSe precursors makes it more difficult for K ions to intercalate into FeSe layers, inducing a phase separation and the formation of a second iron-rich phase.


K0.8Fe2Se2 Superconductivity Iron-based superconductor Transport properties Magnetic properties 



The authors are grateful for the financial support of the National Natural Science Foundation of China (Grant Nos. 11104224 and 11004162), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110184120029), and the Fundamental Research Funds for the Central Universities (Grant No. 2682015ZT11, No. 2682015CX008, 2682016ZDPY10). Y.L. Chen and Yajing Cui are also grateful for the financial support of China Scholarship Council and Li Jinsheng scholarship of Superconductivity and New Energy R&D Center.


  1. 1.
    Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: Iron-based layered superconductor La(O1−x F x)FeAs ( x= 0.05-0.12) with T c = 26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008)CrossRefGoogle Scholar
  2. 2.
    Hsu, F.C., Luo, J.Y., Yeh, K.W., Chen, T.K., Huang, T.W., Wu, P.M., Lee, Y.C., Huang, Y.L., Chu, Y.Y., Yan, D.C., Wu, M.K.: Superconductivity in the PbO-type structure α-FeSe. PNAS 105(38), 14262–14264 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Wang, C., Li, L.J., Chi, S., Zhu, Z.W., Ren, Z.A., Li, Y.K., Wang, Y.T., Lin, X., Luo, Y.K., Xu, X.F., Cao, G.H., Xu, Z.A.: Thorium-doping-induced superconductivity up to 56 K in Gd1−xThxFeAsO. Europhys. Lett. 83, 67006 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Chen, Y.L., Cheng, C.H., Cui, Y.J., Zhang, H., Zhang, Y., Yang, Y., Zhao, Y.: Ir doping-induced superconductivity in the SmFeAsO system. J. Am. Chem. Soc. 131, 10338–10339 (2009)CrossRefGoogle Scholar
  5. 5.
    Ren, Z.A., Che, G.C., Dong, X.L., Yang, J., Lu, Wei., Yi, W., Shen, X.L., Li, Z.C., Sun, L.L., Zhou, F., Zhao, Z.X.: Superconductivity and phase diagram in iron-based arsenic-oxides ReFeAsO1−δ (Re = rare-earth metal) without fluorine doping. Europhys. Lett. 83(1), 17002 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Guo, J.G., Jin, S.F., Wang, G., Wang, S.C., Zhu, K.X., Zhou, T.T., He, M., Chen, X.: Superconductivity in the iron selenide KxFe2Se2 (0 ≤x≤1.0). Phys. Rev. B 82, 180520 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Wang, X.P., Qian, T., Richard, P., Zhang, P., Dong, J., Wang, H.D., Dong, C.H., Fang, M.H., Ding, H.: Strong nodeless pairing on separate electron Fermi surface sheets in (Tl, K)Fe1.78Se2 probed by ARPES. Europhys. Lett. 93(5), 57001 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Mun, E.D., Altarawneh, M.M., Mielke, C.H., Zapf, V.S., Hu, R., Bud’ko, S.L., Canfield, P.C.: Anisotropic H c2 of K0.8Fe1.76Se2 determined up to 60 T. Phys. Rev. B 83(10), 100514 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Torchetti, D.A., Fu, M., Christensen, D.C., Nelson, K.J., Imai, T., Lei, H.C., Petrovic, C.: 77Se NMR investigation of the KxFe2−ySe2 high- T c superconductor ( T c = 33 K). Phys. Rev. B 83, 104508 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Song, Y.J., Wang, Z., Wang, Z.W., Shi, H.L., Chen, Z., Tian, H.F., Chen, G.F., Yang, H.X., Li, J.Q.: Phase transition, superstructure and physical properties of K2Fe4Se5. Europhys. Lett. 95, 37007 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Wang, Z., Song, Y.J., Shi, H.L., Wang, Z.W., Chen, Z., Tian, H.F., Chen, G.F., Guo, J.G., Yang, H.X., Li, J.Q.: Microstructure and ordering of iron vacancies in the superconductor system KyFexSe2 as seen via transmission electron microscopy. Phys. Rev. B 83, 140505 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Zhang, A.M., Xia, T.L., Liu, K., Tong, W., Yang, Z.R., Zhang, Q.M.: Supercondcutivity at 44 K in K inercalated FeSe system with excess Fe. Sci. Rep. 3, 1216 (2013)ADSGoogle Scholar
  13. 13.
    Wang, D.M., He, J.B., Xia, T.L., Chen, G.F.: Effect of varying iron content on the transport properties of the potassium-intercalated iron selenide KxFe2−ySe2. Phys. Rev. B 83(13), 132502 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Ying, T.P, Chen, X.L., Wang, G., Jin, S.F., Lai, X.F, Zhou, T.T., Zhang, H., Shen, S.J., Wang, W.Y.: Superconducting phases in potassium-intercalated iron selenides. J. Am. Chem. Soc. 135, 2951–2954 (2013)CrossRefGoogle Scholar
  15. 15.
    Werthamer, N.R., Helfand, E., Hohenberg, P.C. III: Temperature and purity dependence of the superconducting critical field, H c2. III. Electron Spin and Spin-Orbit Effects 147(1), 295–302 (1966)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Technology of Materials (Ministry of Education), Superconductivity and New Energy R&D CenterSouthwest Jiaotong UniversityChengduChina
  2. 2.School of Materials Science and EngineeringUniversity of New South WalesSydneyAustralia

Personalised recommendations