Journal of Superconductivity and Novel Magnetism

, Volume 29, Issue 8, pp 2065–2069 | Cite as

Theoretical Investigation of Magnetocaloric Effect in La0.6Ca0.2Ba\(_{0.15}\square _{0.05}\)MnO3 Manganite

  • I. Sfifir
  • W. Cheikhrouhou-Koubaa
  • M. Koubaa
  • A. Cheikhrouhou
Original Paper


In this paper, the prediction of the magnetocaloric properties has been investigated in the La0.6Ca0.2Ba\(_{\mathrm {0.15}}\square _{\mathrm {0.05}}\)MnO3 system near the ferromagnetic-paramagnetic phase transition as a function of temperature. The data indicate that the La0.6Ca0.2Ba\(_{\mathrm {0.15}}\square _{\mathrm {0.05}}\)MnO3 system has potential application for magnetic refrigerants in an extended high-temperature range. In addition, the magnetic entropy change distribution is quite uniform, which is desirable for an Ericsson cycle magnetic refrigerator.


Model Magnetocaloric effect Specific heat change Relative cooling power 


  1. 1.
    Megaw, H.D.: Crystal Structures: A Working Approach. W. B. Saunders Company, Philadelphia (1973)Google Scholar
  2. 2.
    Lytle, F.W.: X-ray diffractometry of low-temperature phase transformations in strontium titanate. J. Appl. Phys. 35, 2212 (1964)ADSCrossRefGoogle Scholar
  3. 3.
    Kay, H.F., Bailey, P.C.: Structure and properties of CaTiO3. Acta. Cryst. 10, 219 (1957)CrossRefGoogle Scholar
  4. 4.
    Gschneidner, K.A. Jr., Pecharsky, V.K., Tsoko, A.O.: Recent developments in magneto-caloric materials. Rep. Prog. Phys. 68, 1479 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    Hamad, M.A.: Theoretical work on magneto-caloric effect in La0.75Ca0.25MnO3. J. Adv. Ceram. 1, 290 (2012)CrossRefGoogle Scholar
  6. 6.
    Hamad, M.A.: Room temperature giant electro-caloric properties of relaxor ferroelectric 0.93PMN-0.07PT thin film. AIP Adv. 3, 032115 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Hamad, M.A.: Magneto-caloric effect in polycrystalline Gd1−xCaxBaCo2O5.5. Mater. Lett. 82, 181 (2012)CrossRefGoogle Scholar
  8. 8.
    Hamad, M.A.: Investigations on electro-caloric properties of [111]-oriented 0.955PbZn1/3Nb2/3O3-0.045PbTiO3 single crystals. Phase Transit. 86, 307 (2013)CrossRefGoogle Scholar
  9. 9.
    Hamad, M.A.: Magneto-caloric effect in Ge0.95Mn0.05 films. J. Supercond. Nov. Magn. 26, 449 (2013)CrossRefGoogle Scholar
  10. 10.
    Hamad, M.A.: Calculation of electro-caloric properties of ferroelectric SrBi2Ta2O9. Phase Transit. 85, 159 (2012)CrossRefGoogle Scholar
  11. 11.
    Hamad, M.A.: Theoretical investigations on electro-caloric properties of relaxor ferroelectric 0.9PbMg1/3Nb2/3O3-0.1PbTiO3 thin film. J. Comput. Electron. 11, 344 (2012)CrossRefGoogle Scholar
  12. 12.
    Hamad, M.A.: Theoretical work on magneto-caloric effect in ceramic and sol-gel La0.67Ca0.33MnO3. J. Therm. Anal. Calorim. 111, 1251 (2013)CrossRefGoogle Scholar
  13. 13.
    Hamad, M.A.: Detecting giant electro-caloric effect in SrxBa1−xNb2O6 single crystals. Appl. Phys. Lett. 100, 192908 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Hamad, M.A.: Investigations on electro-caloric properties of ferroelectric Pb(Mg0.067Nb0.133Zr0.8)O 3. Appl. Phys. Lett. 102, 142908 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Hamad, M.A.: Calculations on nano crystalline CoFe2O4 prepared by polymeric precursor method. J. Supercond. Nov. Magn. 26, 669 (2013)CrossRefGoogle Scholar
  16. 16.
    Hamad, M.A.: Prediction of thermo-magnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3. Phase Transit. 85, 106 (2012)CrossRefGoogle Scholar
  17. 17.
    M’nassri, R., Cheikhrouhou, A.: Magneto-caloric effect in LaFe10.7Co0.8Si1.5 compound near room temperature. J. Supercond. Nov. Magn. 27, 1059 (2014)CrossRefGoogle Scholar
  18. 18.
    Szymczak, R., Czepelak, M., Kolano, R., Kolano-Burian, A., Krzymanska, B., Szymczak, H.: Magneto-caloric effect in La1−xCaxMnO3 for x = 0.3, 0.35, and 0.4. J. Mater. Sci. 43, 1734 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Bohigas, X., Tejada, J., del Barco, E., Zhang, X.X., Sales, M.: Tunable magneto-caloric effect in ceramic perovskites. Appl. Phys. Lett. 73, 390 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    Guo, Z.B., Du, Y.W., Zhu, J.S., Huang, H., Ding, W.P., Feng, D.: Large magnetic entropy change in perovskite-type manganese oxides. Appl. Phys. Lett. 78, 1142 (1997)CrossRefGoogle Scholar
  21. 21.
    Radaelli, P.G., Cox, D.E., Marezio, M., Cheong, S.W., Schiffer, P.E., Ramirez, A.P.: Simultaneous structural, magnetic, and electronic transitions in La1−xCaxMnO3 with x = 0.25 and 0.50. Phys. Rev. Lett. 75, 4488 (1995)ADSCrossRefGoogle Scholar
  22. 22.
    Kim, K.H., Gu, J.Y., Choi, H.S., Park, G.W., Noh, T.W.: Frequency shifts of the internal phonon modes in La0.7Ca0.3MnO3. Phys. Rev. Lett. 77, 1877 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    Tang, T., Gu, K.M., Cao, Q.Q., Wang, D.H., Zhang, S.Y., Du, Y.W.: Magneto-caloric properties of Ag-substituted perovskite-type manganites. J. Magn. Magn. Mater. 222, 110 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    Phan, M.H., Tian, S.B., Yu, S.C., Ulyanov, A.N.: Magnetic and magneto-caloric properties of La0.7Ca0.3−xBaxMnO3 compounds. J. Magn. Magn. Mater. 256, 306 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    Sun, Y., Tong, W., Zhang, Y.H.: Large magnetic entropy change above 300K in La0.67Sr0.33Mn0.9Cr0.1O3. J. Magn. Magn. Mater. 232, 205 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    Yang, H., Zhu, Y.H., Xian, T., Jiang, J.L.: Synthesis and magneto-caloric properties of La0.7Ca0.3MnO3 nano-particles with different sizes. J. Alloys Compd. 555, 150 (2013)CrossRefGoogle Scholar
  27. 27.
    Zhang, X.X., Wen, G.H., Wang, F.W., Wang, W.H., Yu, C.H.: Magnetic entropy change in Fe-based compound LaFe10.6Si2.4. Appl. Phys. Lett. 77, 3072 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    Franco, V., Blazquez, J.S., Conde, A.: Field dependence of the magneto-caloric effect in materials with a second order phase transition: a master curve for the magnetic entropy change. Appl. Phys. Lett. 89, 222512 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    M’nassri, R., Cheikhrouhou-Koubaa, W., Chniba Boudjada, N., Cheikhrouhou, A.: Effect of barium-deficiency on the structural, magnetic and magneto-caloric properties of La0.6Sr0.2Ba\(_{\mathrm {0.2-x}}\square _{\mathrm {x}}\)MnO3 (0 ≤ x ≤ 0.15). J. Appl. Phys. 113, 073905–1 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Phan, M.H., Yu, S.C.: Review of the magneto-caloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    Franco, V., Conde, A., Provenzano, V., Shull, R.D.: Scaling analysis of the magneto-caloric effect in Gd5Si2Ge1.9X0.1(X = Al, Cu, Ga, Mn, Fe, Co). J. Magn. Magn. Mater. 322, 218 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    Zhang, X.X., Tejada, J., Xin, Y., Sun, G.F., Wong, K.W., Bohigas, X.: Magneto-caloric effect in La0.67Ca0.33MnOδ and La0.60Y0.07Ca0.33MnOδ bulk materials. Appl. Phys. Lett. 69, 3596 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • I. Sfifir
    • 1
    • 2
  • W. Cheikhrouhou-Koubaa
    • 1
    • 2
  • M. Koubaa
    • 1
  • A. Cheikhrouhou
    • 1
  1. 1.Laboratoire de Physique des Matériaux, Faculté des Sciences de SfaxUniversité de SfaxSfaxTunisia
  2. 2.Centre de Recherche en Numérique de Sfax (CRNS), Cité El Ons, Route de TunisSakiet EzzitTunisia

Personalised recommendations