Local Variations of Cation Composition on a Nanometer-Sized Scale in a YBa2Cu3O6.92 Superconductor

  • L. A. Klinkova
  • V. I. Nikolaichik
  • Q. M. Ramasse
  • P. Abellan
Letter

Abstract

A YBa2Cu3O6.92 superconductor has been studied in an aberration-corrected scanning transmission electron microscope using a combination of atomic resolution imaging and elemental mapping by electron-energy loss spectroscopy (EELS). YBa2Cu3O6.92 has been found to be of a nanostructural state due to local variation of cation composition on a nanometer-sized scale. YBa2Cu3O6.92 can thus be considered as a non-single phased material formed of coherently intergrown nanodomains of phases with different cation compositions.

Keywords

High-temperature superconductors YBa2Cu3O7−δ Nanostructural state Cation non-stoichiometry 

References

  1. 1.
    Nikolaichik, V.I., Klinkova, L.A.: J. Supercond. 10, 431 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    Bianconi, A., Lusignoli, M., Saini, N.L., Kvick, A., Radaelli, P.G.: Phys. Rev. B 54, 4310 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    Egami, T., Petrov, Y., Louca, D.: J. Supercond. 13, 709 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    Etheridge, J.: Phil. Mag. A 73, 643 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    Barry, J.C., Alarco, J.A.: J. Microsc. 202, 415 (2001)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Maki, M., Nishizaki, T., Shibata, K.: Phys. Rev. B 72, 024536 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Schmidt, A.R., Fujita, K., Kim, E-A., Lawler, M.J., Eisaki, H., Uchida, S., Lee, D-H., Davis, J.C.: New J. Phys. 13, 065014 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Pathak, L.C., Mishra, S.K.: Supercond. Sci. Technol. 18, R67 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Phillips, J.C.: Phys. Rev. B 75, 214503 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Kresin, V.Z., Wolf, S.A.: J. Supercond. Nov. Magn. 25, 175 (2012)CrossRefGoogle Scholar
  11. 11.
    Bianconi, A., Poccia, N.: J. Supercond. Nov. Magn. 25, 1403 (2012)CrossRefGoogle Scholar
  12. 12.
    McElroy, K., Lee, J., Slezak, J.A., Lee, D.-H., Eisaki, H., Uchida, S., Davis, J.C.: Science 309, 1048 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Eisaki, H., Kaneko, N., Feng, D.L., Damascelli, A., Mang, P.K., Shen, K.M., Shen, Z.-X., Greven, M.: Phys. Rev. B 69, 064512 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Klinkova, L.A.: Superconduct.: Phys. Chem. Technol. (SPCT) 6, 683 (1993)Google Scholar
  15. 15.
    Klinkova, L.A., Nikolaichik, V.I., Barkovskii, N.V., Schechun, A.F., Fedotov, V.K.: Russ. J. Inorg. Chem. 57, 1196 (2012)CrossRefGoogle Scholar
  16. 16.
    Klinkova, L.A., Nikolaichik, V.I.: Phys. C 506, 33 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    MacLaren, I., Ramasse, Q.M.: Int. Mater. Rev. 59, 115 (2014)CrossRefGoogle Scholar
  18. 18.
    Zandbergen, H.W., Van Tendeloo, G., Okabe, T., Amelinckx, S.: Phys. Stat. Sol. (a) 103, 45 (1987)ADSCrossRefGoogle Scholar
  19. 19.
    Hartel, P., Rose, H., Dinges, C.: Ultramicroscopy 63, 93 (1996)CrossRefGoogle Scholar
  20. 20.
    Fradkin, E., Kivelson, S.A.: Nat. Phys. 8, 864 (2012)CrossRefGoogle Scholar
  21. 21.
    Zaanen, J., Chakravarty, S., Sentil, T., Anderson, P., Lee, P., Schmalian, J., Imada, M., Pines, D., Randeria, M., Varma, C., Vojta, M., Rice, M.: Towards a complete theory of high Tc. Nat. Phys. 2, 138 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • L. A. Klinkova
    • 1
  • V. I. Nikolaichik
    • 2
  • Q. M. Ramasse
    • 3
  • P. Abellan
    • 3
  1. 1.Institute of Solid State Physics of the Russian Academy of SciencesChernogolovkaRussia
  2. 2.Institute of Microelectronics Technology of the Russian Academy of SciencesChernogolovkaRussia
  3. 3.SuperSTEM LaboratoryDaresburyUK

Personalised recommendations