Theoretical Investigation of the Magnetocaloric Effect on Stochiometric and Deficient La0.7Ca0.3MnO3 Manganite at Room Temperature

  • J. Makni-Chakroun
  • H. Omrani
  • W. Cheikhrouhou-Koubaa
  • M. Koubaa
  • A. Cheikhrouhou
Original Paper


In this paper, the magnetic and magnetocaloric properties of La0.7Ca0.3MnO3 (LCMO), La\(_{0.69}\square {~}_{0.01}\)Ca0.3MnO3 (L1) and La0.7Ca\(_{0.29}\square {~}_{0.01}\)MnO3 (L2) systems near a second-order phase transition from a ferromagnetic to a paramagnetic state, have been studied, using a phenomenological model. Based on this model, we are getting the better fits to magnetic transition and we can predict the values of the magnetocaloric effect such as magnetic entropy change, full-width at half-maximum, relative cooling power, and magnetic specific heat change from the calculation of magnetization as a function of temperature under different external magnetic fields. The maximum magnetic entropy change \({(-{\Delta } S}_{M}^{\max }) \)shifts to higher values with one percent of both calcium and lanthanum deficiencies, while the relative cooling power (RCP) and the full-width at half-maximum are reduced. According to the master curve behavior for the temperature dependence of ΔS M predicted for different maximum fields, this work has confirmed that the paramagnetic–ferromagnetic phase transition observed for our sample is of second order.


Phenomenological model Magnetocaloric effect Specific heat change Universal curve 



This work was supported by the Tunisian Ministry of Higher Education and Scientific Research.


  1. 1.
    Reshmi, C.P., Pillai, S.S., Suresh, K.G., Varma, M.: Room temperature magnetocaloric properties of Ni substituted La0.67Sr0.33MnO3. Solid State Sci. 19, 130 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    Nisha, P., Santhosh, P.N., Suresh, K.G., Pavithran, C., Varma, M.: Near room temperature magneto caloric effect in V doped La0.67Ca0.33MnO3 ceramics. J. Alloy. Compd. 478, 566 (2009)CrossRefGoogle Scholar
  3. 3.
    Jian, W.: Magnetocaloric effects near room-temperature of Ag-doped La0.833K0.167MnO3 composites. J. Alloy. Compd. 476, 859 (2009)CrossRefGoogle Scholar
  4. 4.
    Baldini, M., Capogna, L., Capone, M., Arcangeletti, E., Petrillo, C., Goncharenko, I., Postorin, P.: Pressure induced magnetic phase separation in La0.75Ca0.25MnO3 manganite. J. Phys. Condens. Matter. 24, 045601 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Hamad, M.A.: Magnetocaloric effect in La0.7Sr0.3MnO3/Ta2O5 composites. J. Adv. Ceram. 2(3), 213 (2013)CrossRefGoogle Scholar
  6. 6.
    Pavan Kumar, N., Lalitha, G., Sagar, E., Venugopal Reddy, P.: Magnetocaloric behavior of rare earth doped La0.67Ba0.33MnO3. Physica B 457, 275 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    Anwar, M.S., Ahmed, F., Koo, B.H.: Structural distortion effect on the magnetization and magnetocaloric effect in Pr modified La0.65Sr0.35MnO3 manganite. J. Alloy. Compd. 617, 893 (2014)CrossRefGoogle Scholar
  8. 8.
    Dudric, R., Goga, F., Neumann, M., Mican, S., Tetean, R.: Magnetic properties and magnetocaloric effect in La1.4−xCexCa1.6Mn2O7 perovskites synthesized by sol–gel method. J. Mater. Sci. 47, 3125 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Cherif, R., Hlil, E.K., Ellouze, M., Elhalouani, F., Obbade, S.: Study of magnetic and magnetocaloric properties of La0.6Pr0.1Ba0.3MnO3 and La0.6Pr0.1Ba0.3Mn0.9Fe0.1O3 perovskite-type manganese oxides. J. Mater. Sci. 49, 8244 (2014)CrossRefGoogle Scholar
  10. 10.
    PekaŁa, M., Drozd, V., Fagnard, J.F., Vanderbemden, P., Ausloos, M.: Magnetocaloric effect in nano- and polycrystalline manganite La0.7Ca0.3MnO3. Appl. Phys. A 90, 237 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Gschneidner, K.A. Jr, Pecharsky, V.K., Pecharsky, A.O., Zimm, C.B.: Recent developments in magnetic refrigeration. Mater. Sci. Forum 315, 69 (1999)CrossRefGoogle Scholar
  12. 12.
    Hamad, M.A.: Theoretical work on magnetocaloric effect in La0.75Ca0.25MnO3. J. Adv. Ceram. 1(4), 290 (2012)CrossRefGoogle Scholar
  13. 13.
    Pekala, M.: Magnetic field dependence of magnetic entropy change in nanocrystalline and polycrystalline manganites La1xMxMnO3(M=Ca,Sr). J. Appl. Phys. 108, 113913 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Franco, V., Conde, C.F., Blázquez, J.S., Conde, A.: A constant magnetocaloric response in FeMoCuB amorphous alloys with different Fe/B ratios. J. Appl. Phys. 101, 093903 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Franco, V., Conde, A., Romero-Enrique, J.M., Blázquez, J.S.: A universal curve for the magnetocaloric effect: an analysis based on scaling relations. J. Phys. Condens. Matter. 20, 285207 (2008)CrossRefGoogle Scholar
  16. 16.
    M’nassri, R., Cheikhrouhou, A.: Magnetocaloric effect in different impurity doped La0.67Ca0.33MnO3 CompositeA. J. Supercond. Nov. Magn. 27, 421 (2014)CrossRefGoogle Scholar
  17. 17.
    Yang, H., Zhu, Y.H., Xian, T., Jiang, J.L.: Synthesis and magnetocaloric properties of La0.7Ca0.3MnO3 nanoparticles with different sizes. J. Alloys Compd. 555, 150 (2013)CrossRefGoogle Scholar
  18. 18.
    Zhang, X.X., Wen, G.H., Wang, F.W., Wang, W.H., Yu, C.H., Wu, G.H.: Magnetic entropy change in Fe-based compound LaFe10.6Si2.4,. Appl. Phys. Lett. 77, 3072 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    Oesterreicher, H., Parker, F.T.: Magnetic cooling near Curie temperatures above 300 K. J. Appl. Phys. 55, 4336 (1984)ADSCrossRefGoogle Scholar
  20. 20.
    Dong, Q.Y., Zhang, H.W., Sun, J.R., Shen, B.G., Franco, V.: A phenomenological fitting curve for the magnetocaloric effect of materials with a second-order phase transition. J. Appl. Phys. 103, 1161 (2008)Google Scholar
  21. 21.
    Terashita, H., Neumeier, G.G.: Bulk magnetic properties of La1xCaxMnO3 (0x0.14): Signatures of local ferromagnetic order. Phys. Rev. B 71, 134402 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    Caballero-Flores, R., Franco, V., Conde, A., Dong, Q.Y., Zhang, H.: Study of the field dependence of the magnetocaloric effect in Nd1.25Fe11Ti: a multiphase magnetic system. J. Magn. Magn. Mater. 322, 804 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Fan, J., Zhang, W., Zhang, X., Zhang, L., Zhang, Y.: Scaling analysis of PM–FM phase transition in Nd0.5Sr0.25Ca0.25MnO3 based on magnetic entropy change. Mater. Chem. Phys. 144, 206 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Materials Physics Laboratory, Faculty of Sciences of SfaxSfax UniversitySfaxTunisia
  2. 2.Digital Research Center of SfaxSfax TechnoparkSakiet-ezzitTunisia

Personalised recommendations