Advertisement

Complex Lattice and Charge Inhomogeneity Favoring Quantum Coherence in High-Temperature Superconductors

  • Antonio Bianconi
Preface

Abstract

The presence of two components in the electron fluid of high-temperature superconductors and the complex charge and lattice inhomogeneity have been the hot topics of the international conference of the superstripes series, SUPERSTRIPES 2015, held in Ischia in 2015. The debate on the mechanisms for reaching room-temperature superconductors has been boosted by the discovery of superconductivity with the highest critical temperature in pressurized sulfur hydride. Different complex electronic and structural landscapes showing up in superconductors which resist to the decoherence effects of high temperature have been discussed. While low-temperature superconductors described by the BCS approximation are made of a single condensate in the weak coupling, the high-temperature superconductors are made of coexisting multiple condensates (in different spots of the k-space and the real space) some in the BCS-BEC crossover regime and others in the BCS regime. The role of “shape resonance” in the exchange interaction between these different condensates, like “the Fano-Feshbach resonance” in ultracold gasses, is emerging as a key term for high-temperature superconductivity.

Keywords

Superstripes Multi-condensates superconductivity Nanoscale textures Lifshitz transitions BCS-BEC crossover Shape resonances Fano resonances 

References

  1. 1.
    Drozdov, A.P., Eremets, M.I., Troyan, I.A., Ksenofontov, V., Shylin, S.I.: Conventional superconductivity at 203 K at high pressures. Nature 525, 73 (2015)CrossRefADSGoogle Scholar
  2. 2.
    Bianconi, A., Jarlborg, T.: Superconductivity above the lowest earth temperature in pressurized sulfur hydride. EPL (Europhys. Lett.) 112, 37001 (2015). doi: 10.1209/0295-5075/112/37001 CrossRefADSGoogle Scholar
  3. 3.
    Bianconi, A., Jarlborg, T.: Lifshitz transitions and zero point lattice fluctuations in sulfur hydride showing near room temperature superconductivity. Novel Superconducting Materials 1, 37 (2015). doi: 10.1515/nsm-2015-0006 CrossRefGoogle Scholar
  4. 4.
    Jarlborg, T., Bianconi, A.: Breakdown of the Migdal approximation at Lifshitz transitions with giant zero-point motion in H 3S superconductor. preprint arXiv:1509.07451 (2015)
  5. 5.
    Bianconi, A.: Solid State Commun. 89, 933 (1994)CrossRefADSGoogle Scholar
  6. 6.
    Bianconi, A.: Process of increasing the critical temperature Tc of a bulk superconductor by making metal heterostructures at the atomic limit” US Patent 6,265,019 (2001)Google Scholar
  7. 7.
    Bianconi, A., Valletta, A., Perali, A., Saini, N.L.: High T csuperconductivity in a superlattice of quantum stripes. Solid State Commun. 102, 369 (1997). doi: 10.1016/s0038-1098(97)00011-2 CrossRefADSGoogle Scholar
  8. 8.
    Bianconi, A., Valletta, A., Perali, A., Saini, N.L.: Superconductivity of a striped phase at the atomic limit. Physica C: Superconductivity 296, 269–280 (1998). doi: 10.1016/S0921-4534(97)01825-X CrossRefADSGoogle Scholar
  9. 9.
    Bianconi, A.: Feshbach shape resonance in multiband superconductivity in heterostructures. J. Supercond. 18, 625 (2005). doi: 10.1007/s10948-005-0047-5 CrossRefADSGoogle Scholar
  10. 10.
    Lifshitz. I.M.: Sov. Phys. JEPT 11, 1130 (1960)Google Scholar
  11. 11.
    Varlamov, A.A., Egorov, V.S., Pantsulaya, A.V.: Adv. Phys. 38, 469 (1989)CrossRefADSGoogle Scholar
  12. 12.
    Müller, K.A., Micnas, R., Robaszkiewicz, S., Bussmann-Holder, A., Gunnarsson, O., Han, J.E., Koch, E., Crespi, V.H., Deng, S., Simon, A., Köhler, J., Keller, H., Furrer, A., Kochelaev, B.I., Teitel’baum, G.B., Egami, T., Bianconi, A., Saini, N.L., Mihailovic, D., Kabanov, V.V.: Superconductivity in complex systems. In: Müller, K.A., Bussmann-Holder, A. (eds.) Series Structure and Bonding Vol. 114. ISBN: 978-3-540-23124-0. Springer, Berlin (2005), doi: 10.1007/b12231
  13. 13.
    Schrieffer, J.R.: Theory of Superconductivity. (for Josephson-like or exchange-like pair transfer see 300 pp.) (1964)Google Scholar
  14. 14.
    Blatt, J.M.: Theory of superconductivity. (Academic Press Inc, New York) for shape resonances in a metallic membrane see 362 pp and 215 pp (1964)Google Scholar
  15. 15.
    Schrieffer, J.R.: Phys. Today 45, 46 (1992)CrossRefGoogle Scholar
  16. 16.
    Fano, U.: Il Nuovo Cimento (1924–1942) 12, 154 (1935). doi: 10.1007/BF02958288 CrossRefzbMATHGoogle Scholar
  17. 17.
    Tomonaga, S.: Prog. Theo. Phys. (Kyoto) 2, 6 (1947)CrossRefADSGoogle Scholar
  18. 18.
    Feshbach, H., Porter, C.E., Weisskopf, V.F.: Model for nuclear reactions with neutrons. Phys. Rev. 96, 448 (1954)CrossRefADSzbMATHGoogle Scholar
  19. 19.
    Feshbach, H.: Unified theory of nuclear reactions. Ann. Phys. (N.Y.) 5, 357–390 (1958). doi: 10.1016/0003-4916(58)90007-1 CrossRefADSMathSciNetzbMATHGoogle Scholar
  20. 20.
    Fano, U.: Phys. Rev. 124, 1866 (1961)CrossRefADSzbMATHGoogle Scholar
  21. 21.
    Leggett, A.J.: Modern trends in the theory of condensed matter edited by A. Pekalski and R. Przystawa, vol. 115. Springer-Verlag, Berlin (1980)Google Scholar
  22. 22.
    Leggett, A.J. In: Davies, P. (ed.) : The new physics, pp 268–288. Cambridge University Press (1989)Google Scholar
  23. 23.
    Bianconi, A.: Ugo Fano and shape resonances. AIP Conf. Proc. 652, 13–18 (2003)CrossRefADSGoogle Scholar
  24. 24.
    Vittorini-Orgeas, A., Bianconi, A.: J. Supercond. Novel Magn. 22, 215 (2009)CrossRefGoogle Scholar
  25. 25.
    Kugel, K.I., Rakhmanov, A.L., Sboychakov, A.O., Poccia, N., Bianconi, A.: Model for phase separation controlled by doping and the internal chemical pressure in different cuprate superconductors. Phys. Rev. B 78, 165124 (2008)CrossRefADSGoogle Scholar
  26. 26.
    Bianconi, A.A., Poccia, N., Sboychakov, A.O., Rakhmanov, A.L., Kugel, K.I.: Intrinsic arrested nanoscale phase separation near a topological Lifshitz transition in strongly correlated two-band metals.Supercond. Sci. Technol. 28, 024005 (2015). doi: 10.1088/0953-2048/28/2/024005 ADSGoogle Scholar
  27. 27.
    Bianconi, A., Di Castro, D., Bianconi, G., Pifferi, A., Saini, N.L., Chou, F.C., et al.: Coexistence of stripes and superconductivity: Tc amplification in a superlattice of superconducting stripes. Phys. C. Supercond. 341, 1719 (2000)CrossRefADSGoogle Scholar
  28. 28.
    Campi, G., Bianconi, A., Poccia, N., Bianconi, G., Barba, L., Arrighetti, G., Innocenti, D., Karpinski, J., Zhigadlo, N.D., Kazakov, S.M., et al.: Inhomogeneity of charge-density-wave order and quenched disorder in a high-Tc superconductor. Nature 525, 359 (2015). doi: 10.1038/nature14987 CrossRefADSGoogle Scholar
  29. 29.
    Caivano, R., Fratini, M., Poccia, N., Ricci, A., Puri, A., Ren, Z.-A., Dong, X.-L., Yang, J., Lu, W., Zhao, Z.-X., et al.: Feshbach resonance and mesoscopic phase separation near a quantum critical point in multiband FeAs-based superconductors. Superconductor Science and Technology 22, 014004 (2009). doi: 10.1088/0953-2048/22/1/014004 CrossRefADSGoogle Scholar
  30. 30.
    Giraldo-Gallo, P., Zhang, Y., Parra, C., Manoharan, H.C., Beasley, M.R., Geballe, T.H., Kramer, M.J., Fisher, I.R.: Stripe-like nanoscale structural phase separation in superconducting BaPb 1−xBi x O 3. Nat. Commun. 6, 8231 (2015). doi: 10.1038/ncomms9231 CrossRefADSGoogle Scholar
  31. 31.
    Drees, Y., et al.: Hour-glass magnetic excitations induced by nanoscopic phase separation in cobalt oxides. Nat. Commun. 5, 5731 (2014). doi: 10.1038/ncomms6731 CrossRefADSGoogle Scholar
  32. 32.
    Menushenkov, A.P., Kuznetsov, A.V., Klementiev, K.V., Yu Kagan, M.: Fermi-Bose mixture in Ba(K) superconducting oxide BiO3. Journal Superconductor Novitates Magnetic (2015). doi: 10.1007/s10948-015-3295-z
  33. 33.
    Phillips, J.C.: Percolative theories of strongly disordered ceramic high temperature superconductors. PNAS 107, 1307–1310 (2010). doi: 10.1073/pnas.0913002107 CrossRefADSGoogle Scholar
  34. 34.
    Phillips, J.C.: Ineluctable complexity of high temperature superconductivity elucidated. J. Supercond. Novel Magn. 27, 345–347 (2014)CrossRefGoogle Scholar
  35. 35.
    Gor’kov, L.P., Teitel’baum, G.B.: Two-component energy spectrum of cuprates in the pseudogap phase and its evolution with temperature and at charge ordering. Sci. Rep. 5, 8524 (2015). doi: 10.1038/srep08524 CrossRefGoogle Scholar
  36. 36.
    De Mello, E.V.L.: EPL Europhys. Lett. 99, 37003 (2012). doi: 10.1209/0295-5075/99/37003 CrossRefADSGoogle Scholar
  37. 37.
    Pinheiro, C.F.S., De Mello, E.V.L.: Phys. A: Stat. Mech. Appl. 391, 1532 (2012). doi: 10.1016/j.physa.2011.08.033 CrossRefGoogle Scholar
  38. 38.
    De Mello, E.V.L.: EPL Europhys. Lett. 57008 (2012). doi: 10.1209/0295-5075/98/57008
  39. 39.
    de Mello, E.V.L., Caixeiro, E.S., González, J.L.: Phys. Rev. B 67, 024502 (2003). doi: 10.1103/physrevb.67.024502 CrossRefADSGoogle Scholar
  40. 40.
    Pinheiro, C.F.S., De Mello, E.V.L.: Phys. A: Stat. Mech. Appl. 391, 1532 (2012). doi: 10.1016/j.physa.2011.08.033 CrossRefGoogle Scholar
  41. 41.
    Kresin, V., Ovchinnikov, Y., Wolf, S.: Inhomogeneous superconductivity and the “pseudogap” state of novel superconductors. Phys. Rep. 431, 231–259 (2006)CrossRefADSGoogle Scholar
  42. 42.
    Bishop, A.R.: High T coxides: a collusion of spin, charge and lattice. J. Phys. Conf. Ser. 108, 012027 (2008). doi: 10.1088/1742-6596/108/1/012027 CrossRefADSGoogle Scholar
  43. 43.
    Bianconi, G.: Phys. Rev. E 85, 061113 (2012)CrossRefADSGoogle Scholar
  44. 44.
    Bianconi, A., Doniach, S., Lublin, D.: X-ray Ca K edge of calcium adenosine triphosphate system and of simple Ca compunds. Chem. Phys. Lett. 59, 121 (1978). doi: 10.1016/0009-2614(78)85629-2 CrossRefADSGoogle Scholar
  45. 45.
    Garcia, J., Bianconi, A., Benfatto, M., Natoli, C.R.: Coordination geometry of transition metal ions in dilute solutions by XANES. J. Phys. Colloques 47, C8 49 (1986). doi: 10.1051/jphyscol:1986807 CrossRefGoogle Scholar
  46. 46.
    Bazin, D., Benfatto, M., Bianconi, A., Clement, R., Dexpert, H., Galy, J., Garcia, J., Lagarde, P., Laggner, P., Mathey, Y., et al.: Synchrotron radiation in chemistry and biology 1. vol. 145 (Springer, Berlin Heidelberg, 1988), ISBN:9783540183853 http://www.springer.com/us/book/9783540183853. Springer Berlin Heidelberg (1988)
  47. 47.
    Della Longa, S., Soldatov, A., Pompa, M., Bianconi, A.: Atomic and electronic structure probed by x-ray absorption spectroscopy: Full multiple scattering analysis with the G4XANES package. Comput. Mater. Sci. 4, 199 (1995). doi: 10.1016/0927-0256(95)00027-n CrossRefGoogle Scholar
  48. 48.
    Bianconi, A., Della Longa, S., Li, C., Pompa, M., Congiu-Castellano, A., Udron, D., Flank, A., Lagarde, P.: Linearly polarized Cu L 3-edge x-ray-absorption near-edge structure of Bi2CaSr2Cu2O8. Phys. Rev. B 44, 10126 (1991). doi: 10.1103/physrevb.44.10126 CrossRefADSGoogle Scholar
  49. 49.
    Bianconi, A., Clozza, A., Congiu-Castellano, A., Della-Longa, S., De-Santis, M., Di-Cicco, A., Garg, K., Delogu, P., Gargano, A., Giorgi, R., et al.: Experimental evidence of itinerant Cu(3d9)-Oxygen-hole many body configuration in the High-Tc superconductor YBa2Cu3O7. Int. J. Modern Phys. B (IJMPB) 1, 853 (1987). http://www.worldscinet.com/ijmpb/01/0103n04/S0217979287001213.html CrossRefADSGoogle Scholar
  50. 50.
    Bianconi, A., Missori, M., Oyanagi, H., Yamaguchi, H., Nishiara, Y., Della Longa, S.: The measurement of the polaron size in the metallic phase of cuprate superconductors. Europhys. Lett. (EPL) 31, 411 (1995). http://iopscience.iop.org/0295-5075/31/7/012 CrossRefADSGoogle Scholar
  51. 51.
    Bianconi, A.: Superstripes Int. J. Modern Phys. B 14, 3289 (2000). doi: 10.1142/S0217979200003769 CrossRefADSGoogle Scholar
  52. 52.
    Campi, G., Bianconi, A.: High Temperature superconductivity in new geometries of matter at mesoscopic scale. Journal of Superconductivity and Novel Magnetism (2015). doi: 10.1007/s10948-015-3326-9
  53. 53.
    Jarlborg, T.: Electronic structure, doping, order and disorder in cuprate superconductors. Journal of Superconductivity and Novel Magnetism (2015). doi: 10.1007/s10948-015-3289-x
  54. 54.
    Reznik, D., Parshall, D., Park, S.R., Lynn, J.W., Wolf, Th.: Absence of magnetic field dependence of the anomalous bond-stretching phonon in YBa2Cu3O6.6. Journal of Superconductivity and Novel Magnetism (2015)Google Scholar
  55. 55.
    Rudnev, I., Menushenkov, A., Blednov, A., Chepikov, V., Samoylenkov, S.: Magnetization and critical current of calcium-doped YBa2Cu3O7-x composite films. Journal of Superconductivity and Novel Magnetism (2015). doi: 10.1007/s10948-015-3294-0
  56. 56.
    Seibold, G., Benfatto, L., Castellani, C., Lorenzana, J.: Current correlations in strongly disordered superconductors. Journal of Superconductivity and Novel Magnetism (2015). doi: 10.1007/s10948-015-3300-6 Google Scholar
  57. 57.
    Shi, Z., Baity, P.G., Popovic, D.: Current-voltage characteristics and vortex dynamics in highly underdoped La2-xSrxCuO4. Journal of Superconductivity and Novel Magnetism (2015). doi: 10.1007/s10948-015-3301-5 Google Scholar
  58. 58.
    Li, Z.W., Drees, Y., Ricci, A., Lamago, D., Piovano, A., Rotter, M., Schmidt, W., Sobolev, O., R□utt, U., Gutowski, O., Sprung, M., Castellan, J.P., Tjeng L.H., Komarek, A.C.: Electronic and magnetic nano phase separation in cobaltates La2 - x Sr x CoO4. Journal of Superconductivity and Novel Magnetism (2015). doi: 10.1007/s10948-015-3302-4
  59. 59.
    Yanagisawa, T., Miyazaki, M., Yamaji, K.: Superconductivity from strong correlation in high-temperature superconductors. Journal of Superconductivity and Novel Magnetism (2015). doi: 10.1007/s10948-015-3303-3
  60. 60.
    Matveev, O.P., Shvaika, A.M., Devereaux, T.P., Freericks, J.K.: Nonequilibrium dynamical mean-field theory for the charge-density-wave phase of the Falicov-Kimball model superconductors. Journal of Superconductivity and Novel Magnetism (2015). doi: 10.1007/s10948-015-3304-2
  61. 61.
    Rademaker, L., Ralko, A., Fratini, S., Dobrosavljevic, V.: Avoiding stripe order: emergence of the supercooled electron liquid. Journal of Superconductivity and Novel Magnetism (2015). doi: 10.1007/s10948-015-3310-4
  62. 62.
    Baar, S., Momono, N., Kawamura, K., Kobayashi, Y., Iwasaki, S., Sakawaki, T., Amakai, Y., Takano, H., Kurosawa, T., Oda, M., Ido, M.: The impurity effects on the superconducting gap in the high-Tc superconductor Bi2Sr2CaCu2-xFexO8 + delta investigated by STM/STS. Journal of Superconductivity and Novel Magnetism (2015). doi: 10.1007/s10948-015-3320-2
  63. 63.
    Jarlborg, T., Bianconi, A.: Electronic structure of superoxygenated La 2NiO 4domains with ordered oxygen interstitials. Journal of Superconductivity and Novel Magnetism (2015). doi: 10.1007/s10948-015-3322-0
  64. 64.
    Chinotti, M., Mirri, C., Dusza, A., Bastelberger, S., Degiorgi, L., Chu, J.-H., Kuo, H.-H., Fisher, I.R.: Dichroism in the parent ferropnictide BaFe2As2 across the nematic phase transition. Journal of Superconductivity and Novel Magnetism (2015). doi: 10.1007/s10948-015-3292-2
  65. 65.
    Duan, C., Yang, J., Ye, F.: Despina Louca Evidence of Nematicity in K 0.8Fe 1.7Se 2. Journal of Superconductivity and Novel Magnetism (2015). doi: 10.1007/s10948-015-3327-8
  66. 66.
    Kuzmicheva, T.E., Kuzmichev, S.A., Tchesnokov, S.N., Zhigadlo, N.D.: Intrinsic multiple andreev reactions in layered Th-doped Sm1-xThxOFeAs. Journal of Superconductivity and Novel Magnetism (2015). doi: 10.1007/s10948-015-3297-x. arXiv:1512.01061 Google Scholar
  67. 67.
    Shylin, S.I., Ksenofontov, V., Medvedev, S.A., Felser, C.: Correlation between Tc and hyperfine parameters of Fe in layered chalcogenide superconductors. Journal of Superconductivity and Novel Magnetism (2015). doi: 10.1007/s10948-015-3299-8
  68. 68.
    Tortello, M., Stepanov, V.A., Ding, X., Wen, H.-H., Gonnelli, R.S., Greene, L.H.: Directional point-contact josephson junctions on Ba 0.4 K 0.6(FeAs) 2single crystals. Journal of Superconductivity and Novel Magnetism online (2015). doi: 10.1007/s10948-015-3323-z
  69. 69.
    Widom, M., Quader, K.: Elastic instability of the orthorhombic antiferromagnetic phase of 122-pnictides under pressure. Journal of Superconductivity and Novel Magnetism (2015). doi: 10.1007/s10948-015-3324-y
  70. 70.
    Chavez, M., Grether, M., De Llano, M.: Generalized BEC and crossover theories of superconductors and ultracold bosonic and fermionic gases. Journal of Superconductivity and Novel Magnetism (2015). doi: 10.1007/s10948-015-3288-y
  71. 71.
    Salasnich, L.: Reliable equation of state for composite bosons in the 2D BCS-BEC crossover. Journal of Superconductivity and Novel Magnetism (2015). doi: 10.1007/s10948-015-3290-4
  72. 72.
    Palumbo, F.: Composites and quasiparticles in a number conserving bosonization method. Journal of Superconductivity and Novel Magnetism (2015). doi: 10.1007/s10948-015-3296-y
  73. 73.
    Wu, S.-Y.: Vortex in holographic two-band superconductor. Journal of Superconductivity and Novel Magnetism (2015). doi: 10.1007/s10948-015-3307-z
  74. 74.
    Guidini, A., Flammia, L., Milosevic, M.V., Perali, A.: BCS-BEC crossover in quantum confined superconductors. Journal of Superconductivity and Novel Magnetism (2015). doi: 10.1007/s10948-015-3308-y Google Scholar
  75. 75.
    Zhao, H., Hu, X.: Vortices with fractional flux quanta in multi-band superconductors. Journal of Superconductivity and Novel Magnetism (2015). doi: 10.1007/s10948-015-3309-x
  76. 76.
    Rubin, P., Kristoffel, N.: Simultaneous action of intra- and interband pair channels in multiband superconductivity. Journal of Superconductivity and Novel Magnetism (2015). doi: 10.1007/s10948-015-3321-1
  77. 77.
    Brzezicki, W., Cuoco, M., Oles, A.M.: Novel spin-orbital phases induced by orbital dilution. Journal of Superconductivity and Novel Magnetism (2015). doi: 10.1007/s10948-015-3287-z
  78. 78.
    Yukalov, V.I., Henner, V.K., Belozerova, T.S., Yukalova, E.P.: Spintronics with magnetic nanomolecules and graphene flakes. Journal of Superconductivity and Novel Magnetism (2015). doi: 10.1007/s10948-015-3291-3
  79. 79.
    Arutyunov, K.Y., Lehtinen, J.S., Rantala, T.: The quantum phase slip phenomenon in superconducting nanowires with high-impedance environment Journal of Superconductivity and Novel Magnetism (2015) 10.1007/s10948-015-3298-9
  80. 80.
    Guo, Y., Zhou, S., Bai, Y., Zhao, J.: Tunable thermal conductivity of silicene by germanium doping. Journal of Superconductivity and Novel Magnetism (2015). doi: 10.1007/s10948-015-3305-1
  81. 81.
    Piatti, E., Sola, A., Daghero, D., Ummarino, G.A., Laviano, F., Nair, J.R., Gerbaldi, C., Cristiano, R., Casaburi, A., Gonnelli, R.S.: Superconducting transition temperature modulation in NbN via EDL gating. Journal of Superconductivity and Novel Magnetism (2015). doi: 10.1007/s10948-015-3288-y
  82. 82.
    Croitoru, M.D., Shanenko, A.A., Vagov, A., Vasenko, A.S., Milosevic, M.V., Axt, V.M., Peeters, F.M.: Influence of disorder on superconducting correlations in nanoparticles. Journal of Superconductivity and Novel Magnetism (2015)Google Scholar
  83. 83.
    Lankhorst, M., Poccia, N.: Giant Shapiro steps in a superconducting network of nanoscale Nb islands. Journal of Superconductivity and Novel Magnetism (2015). doi: 10.1007/s10948-015-3325-x
  84. 84.
    Bussmann-Holder, A., Keller, H., Khasanov, R., Simon, A., Bianconi, A., Bishop, A.R.: Isotope and interband effects in a multi-band model of superconductivity. J. Phys. 13, 093009 (2011). doi: 10.1088/1367-2630/13/9/093009 Google Scholar
  85. 85.
    Perali, A., Innocenti, D., Valletta, A., Bianconi, A.: Anomalous isotope effect near a 2.5 lifshitz transition in a multi-band multi-condensate superconductor made of a superlattice of stripes. Superconductor Science and Technology 25, 124002 (2012). doi: 10.1088/0953-2048/25/12/124002 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.RICMASS, Rome International Center for Materials Science SuperstripesRomeItaly
  2. 2.Institute of CrystallographyCNRMonterotondo RomaItaly
  3. 3.Solid State and Nanosystems PhysicsNational Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute)MoscowRussia
  4. 4.Department of High Temperature Superconductivity and Nanostructures, Solid State Physics DivisionP.N. Lebedev Physical Institute of the Russian Academy of SciencesMoscowRussia
  5. 5.Consorzio Interuniversitario INSTMUdrRomeItaly

Personalised recommendations