High-Temperature Superconductivity in a Hyperbolic Geometry of Complex Matter from Nanoscale to Mesoscopic Scale

  • G. CampiEmail author
  • A. Bianconi
Original Paper


While it was known that high-temperature superconductivity appears in cuprates showing complex multiscale phase separation due to inhomogeneous charge density wave (CDW) order, the spatial distribution of CDW domains remained an open question for a long time, because of the lack of experimental probes able to visualize their spatial distribution between atomic and macroscopic scale. Recently scanning micro-X-ray diffraction (S μXRD) revealed CDW crystalline electronic puddles with a complex fat-tailed spatial distribution of their size. In this work, we have determined and mapped the anisotropy of the CDW puddles in HgBa2CuO4 + y (Hg1201) single crystal. We discuss the emergence of high-temperature superconductivity in the interstitial space with hyperbolic geometry that opens a new paradigm for quantum coherence at high temperature where negative dielectric function and interference between different pathways can help to raise the critical temperature.


X-ray diffraction High temperature superconductivity Hyperbolic geometry 


  1. 1.
    Nader, E., Ziolkowski, R.W.: Metamaterials: physics and engineering explorations. Wiley (2006).
  2. 2.
    Cohen, A., Frydman, A.: Mesoscopic effects in macroscopic granular systems. J. Phys. Condens. Matter 20, 075234 (2008). doi: 10.1088/0953-8984/20/7/075234 CrossRefADSGoogle Scholar
  3. 3.
    Riekel, C., Burghammer, M., Davies, R., Gebhardt, R.: Fundamentals of non-crystalline diffraction with microfocus techniques. In: Ezquerra, T.A., Garcia-Gutierrez, M.C., Nogales, A., Gomez, M. (eds.) Applications of Synchrotron Light to Non-Crystalline Diffraction in Materials and Life Sciences, p. 91. Springer, Heidelberg (2008)Google Scholar
  4. 4.
    Campi, G., Ciasca, G., Poccia, N., Ricci, A., Fratini, M., Bianconi, A.: Controlling photoinduced electron transfer via defects self-organization for novel functional macromolecular systems. Curr. Protein Pept. Sci. 15(4), 394–399 (2014). CrossRefGoogle Scholar
  5. 5.
    Campi, G., Pezzotti, G., Fratini, M., Ricci, A., Burghammer, M., Cancedda, R., Mastrogiacomo, M., Bukreeva, I., Cedola, A.: Imaging regenerating bone tissue based on neural networks applied to micro-diffraction measurements. Appl. Phys. Lett. 103, 253703 (2013). doi: 10.1063/1.4852056 CrossRefADSGoogle Scholar
  6. 6.
    Poccia, N., Campi, G., Ricci, A., Caporale, A.S., Di Cola, E., Hawkins, T.A., Bianconi, A.: Changes of statistical structural fluctuations unveils an early compacted degraded stage of PNS myelin. Scientific Reports 4, 5430 (2014). CrossRefADSGoogle Scholar
  7. 7.
    Campi, G., Fratini, M., Bukreeva, I., Ciasca, G., Burghammer, M., Brun, F., Tromba, G., Mastrogiacomo, M., Cedola, A.: Imaging collagen packing dynamics during mineralization of engineered bone tissue. Acta Biomater. 23, 309–316 (2015). CrossRefGoogle Scholar
  8. 8.
    Giraldo-Gallo, P., Zhang, Y., Parra, C., Manoharan, H.C., Beasley, M.R., Geballe, T.H., Kramer, M.J., Fisher, I.R.: Stripe-like nanoscale structural phase separation in superconducting BaPb1−xBixO3. Nat. Commun. 6, 8231 (2015). CrossRefADSGoogle Scholar
  9. 9.
    Campi, G., Capelluti, E., Proffen, Th., Qiu, X., Bozin, E.S., Billinge, S.J.L., Agrestini, S., Saini, N.L., Bianconi, A.: Study of temperature dependent atomic correlations in MgB2. Eur. Phys. J. B 52, 15–21 (2006). CrossRefADSGoogle Scholar
  10. 10.
    Campi, G., Ricci, A., Bianconi, A.: Local structure in Mg1−xAlx B 2 system by high resolution neutron diffraction. J. Supercond. Nov. Magn. 25, 1319–1322 (2012). CrossRefGoogle Scholar
  11. 11.
    Poccia, N., Bianconi, A., Campi, G., Fratini, M., Ricci, A.: Size evolution of the oxygen interstitial nanowires in La2CuO4+y by thermal treatments and x-ray continuous illumination. Supercond. Sci. Technol. 25, 124004 (2012). CrossRefADSGoogle Scholar
  12. 12.
    Fratini, M., Poccia, N., Ricci, A., Campi, G., Burghammer, M., Aeppli, G.: & Bianconi A. Scale-free structural organization favoring high temperature superconductivity. Nature 466, 841–844 (2010). CrossRefADSGoogle Scholar
  13. 13.
    Campi, A. Ricci, Poccia, N., Barba, L., Arrighetti, G., Burghammer, M., Caporale, A.S., Bianconi, A.: Scanning micro-x-ray diffraction unveils the distribution of oxygen chain nanoscale puddles in YBa2Cu3O6.33. Phys. Rev. B 87, 014517 (2013). doi: 10.1103/PhysRevB.87.014517 CrossRefADSGoogle Scholar
  14. 14.
    Ricci, A., Poccia, N., Campi, G., Coneri, F., Barba, L., Arrighetti, G., Polentarutti, M., Burghammer, M., Sprung, M., Zimmermann, M.v., Bianconi, A.: Networks of superconducting nano-puddles in 1/8 doped YBa2Cu3O6.5 controlled by thermal manipulation. New J. Phys. 16, 053030 (2014). CrossRefADSGoogle Scholar
  15. 15.
    Ricci, A., Poccia, N., Campi, G., Joseph, B., Arrighetti, G., Barba, L., Reynolds, M., Burghammer, M., Takeya, H., Mizuguchi, Y., Takano, Y., Colapietro, M., Saini, N.L., Bianconi, A.: Nanoscale phase separation in the iron chalcogenide superconductor K0.8Fe1.6Se2 as seen via scanning nanofocused x-ray diffraction. Phys. Rev. B 84, 060511 (2011). doi: 10.1103/PhysRevB.84.060511 CrossRefADSGoogle Scholar
  16. 16.
    Ricci, A., Poccia, N., Joseph, B., Arrighetti, G., Barba, L., Plaisier, J., Campi, G., Mizuguchi, Y., Takeya, H., Takano, Y., Saini, N. L., Bianconi, A.: Intrinsic phase separation in superconducting K0.8Fe1.6Se2 (Tc = 31.8 K) single crystals. Supercond. Sci. Technol. 24, 082002 (2011). 0953-2048/24/8/082002/meta CrossRefADSGoogle Scholar
  17. 17.
    Ricci, A., Poccia, N., Joseph, B., Innocenti, D., Campi, G., Zozulya, A., Westermeier, F., Schavkan, A., Coneri, F., Bianconi, A., Takeya, H., Mizuguchi, Y., Takano, Y., Mizokawa, T., Sprung, M., Saini, N.L.: Direct observation of nanoscale interface phase in the superconducting chalcogenide KxFe2−ySe2 with intrinsic phase separation. Phys. Rev. B 91(R), 020503 (2015). doi: 10.1103/PhysRevB.91.020503 CrossRefADSGoogle Scholar
  18. 18.
    Croft, T.P., Lester, C., Senn, M. S., Bombardi, A., Hayden, S.M.: Charge density wave fluctuations in La2−xSrxCuO4and their competition with superconductivity. Phys. Rev. B 89 (2014). doi: 10.1103/PhysRevB.89.224513
  19. 19.
    Campi, G., Innocenti, D., Bianconi, A.: CDW and similarity of the Mott insulator-to-metal transition in cuprates with the gas-to-liquid-liquid transition in supercooled water. J. Supercond. Nov. Magn. 28, 1355–1363 (2015). CrossRefGoogle Scholar
  20. 20.
    Poccia, N., Ricci, A., Campi, G., Fratini, M., Puri, A., Di Gioacchino, D., Marcelli, A., Reynolds, M., Burghammer, M., Saini, N L, Aeppli, G., Bianconi, A.: Optimum inhomogeneity of local lattice distortions in La2CuO4+y. Proc. Natl. Acad. Sci. U. S. A. 109, 15685–15690 (2012). CrossRefADSGoogle Scholar
  21. 21.
    Campi, G., Bianconi, A., Poccia, N., Bianconi, G., Barba, L., Arrighetti, G., Innocenti, D., Karpinski, J., Zhigadlo, N. D., Kazakov, S. M., Burghammer, M., Zimmermann, M.v., Sprung, M., Ricci, A.: Inhomogeneity of charge-density-wave order and quenched disorder in a high-Tc superconductor. Nature 525, 359–362 (2015). CrossRefADSGoogle Scholar
  22. 22.
    Karpinski, J., et al.: Single crystals of HgBa2Can−1CunOx and chain compounds A1−x CuO2 (A = Sr, Ca, Ba), high pressure synthesis and properties 117, 735–739 (1999)Google Scholar
  23. 23.
    Lausi, A., Polentarutti, M., Onesti, S., Plaisier, J.R., Busetto, E., Bais, G., Barba, L., Cassetta, A., Campi, G., Lamba, D., Pifferi, A., Mande, S.C., Sarma, D.D., Sharma, S. M., Paolucci, G.: Status of the crystallography beamlines at elettra. Eur. Phys. J. Plus 130, 1–8 (2015). CrossRefGoogle Scholar
  24. 24.
    Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev 51, 661–703 (2009). CrossRefADSMathSciNetzbMATHGoogle Scholar
  25. 25.
    Zeng, W., Sarkar, R., Luo, F., Gu, X., Gao, J.: Resilient routing for sensor networks using hyperbolic embedding of universal covering space. In: INFOCOM, 2010 Proc. IEEE, pp 1–9. IEEE (2010).;arnumber=5461988&
  26. 26.
    Cannon, J.W., Floyd, W.J., Kenyon, R., Parry, W.R.: Hyperbolic geometry. Flavors of Geometry 31, 59–115 (1997)MathSciNetGoogle Scholar
  27. 27.
    Bianconi, A., Doniach, S., Lublin, D.: X-ray Ca K edge of calcium adenosine triphosphate system and of simple Ca compounds. Chem. Phys. Lett. 59, 121–124 (1978). doi: 10.1016/0009-2614(78)85629-2 CrossRefADSGoogle Scholar
  28. 28.
    Garcia, J., Bianconi, A., Benfatto, M., Natoli, C.R.: Coordination geometry of transition metal ions in dilute solutions by XANES. Le Journal de Physique Colloques 47(C8), C8-49 (1986). doi: 10.1051/jphyscol:1986807 CrossRefGoogle Scholar
  29. 29.
    Bianconi, A., Della Longa, S., Li, C., Pompa, M., Congiu-Castellano, A., Udron, D., Flank, A., Lagarde, P.: Linearly polarized Cu L3-edge x-ray-absorption near-edge structure of Bi2CaSr2Cu2O8. Phys. Rev. B 44, 10126–10138 (1991). doi: 10.1103/physrevb.44.10126 CrossRefADSGoogle Scholar
  30. 30.
    Bianconi, A., Missori, M., Oyanagi, H., Yamaguchi, H., Nishiara, Y., Della Longa, S: The measurement of the polaron size in the metallic phase of cuprate superconductors. Europhys. Lett. (EPL) 31, 411–415 (1995). CrossRefADSGoogle Scholar
  31. 31.
    Bianconi, A.: Superstripes. Int. J. Mod. Phys. B 14, 3289–3297 (2000). doi: 10.1142/S0217979200003769 CrossRefADSGoogle Scholar
  32. 32.
    Krioukov, D., Kitsak, M., Sinkovits, R.S., Rideout, D., Meyer, D., Boguñá, M.: Network cosmology. Scientific Reports 2, 793 (2012). doi: 10.1038/srep00793 CrossRefADSGoogle Scholar
  33. 33.
    Wu, Z., Menichetti, G., Rahmede, C., Bianconi, G.: Emergent complex network geometry. Sci. Rep. 5, 10073 (2015). CrossRefADSGoogle Scholar
  34. 34.
    Pendry, J.B.: Quasi-extended electron states in strongly disordered systems. J. Phys. C Solid State Phys. 20 (5), 733 (1987). doi: 10.1088/0022-3719/20/5/009 CrossRefADSGoogle Scholar
  35. 35.
    Pendry, J.B., Holden, A.J., Stewart, W.J., Youngs, I.: Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996). doi: 10.1103/physrevlett.76.4773 CrossRefADSGoogle Scholar
  36. 36.
    Gao, J., Sun, L., Deng, H., Mathai, C.J., Gangopadhyay, S., Yang, X.: Experimental realization of epsilon-near-zero metamaterial slabs with metal-dielectric multilayers. Appl. Phys. Lett. 103, 051111 (2013). doi: 10.1063/1.4817678 CrossRefADSGoogle Scholar
  37. 37.
    Romanowsky, M.B., Capasso, F.: Orientation-dependent Casimir force arising from highly anisotropic crystals: application to Bi2Sr2CaCu2O8 + δ. Phys. Rev. A 78, 042110 (2008). doi: 10.1103/physreva.78.042110 CrossRefADSGoogle Scholar
  38. 38.
    Barthelemy, P., Bertolotti, J., Wiersma, D.S.: A Lévy flight for light. Nature 453, 495–498 (2008). doi: 10.1038/nature06948 CrossRefADSGoogle Scholar
  39. 39.
    Bertolotti, J., van Putten, E.G., Blum, C., Lagendijk, A., Vos, W.L., Mosk, A.P.: Non-invasive imaging through opaque scattering layers. Nature 491, 232 (2012). doi: 10.1038/nature11578 CrossRefADSGoogle Scholar
  40. 40.
    Zeng, J., Wang, X., Sun, J., Pandey, A., Cartwright, A.N., Litchinitser, N.M.: Manipulating complex light with metamaterials. Scientific Reports 3, 02826 (2013). doi: 10.1038/srep02826 ADSGoogle Scholar
  41. 41.
    Shalaev, V.M.: Optical negative-index metamaterials. Nat. Photon 1, 41–48 (2007). doi: 10.1038/nphoton.2006.49 CrossRefADSGoogle Scholar
  42. 42.
    Esslinger, M., Vogelgesang, R., Talebi, N., Khunsin, W., Gehring, P., de Zuani, S., Gompf, B., Kern, K.: Tetradymites as natural hyperbolic materials for the near-infrared to visible. ACS Photonics 1(12), 1285–1289 (2014). doi: 10.1021/ph500296e CrossRefGoogle Scholar
  43. 43.
    Narimanov, E.E., Kildishev, A.V.: Metamaterials: naturally hyperbolic. Nat Photon 9, 214–216 (2015). doi: 10.1038/nphoton.2015.56 CrossRefADSGoogle Scholar
  44. 44.
    Sun, J., Zeng, J., Wang, X., Cartwright, A.N., Litchinitser, N.M.: Concealing with structured light. Scientific Reports 4, 04093 (2014). doi: 10.1038/srep04093 ADSGoogle Scholar
  45. 45.
    Yang, X.-S., Deb, S.: Cuckoo search via Levy flights. In: Nature; biologically inspired computing, 2009. NaBIC 2009. World Congress on. IEEE, pp. 210–214 (2009). doi: 10.1109/nabic.2009.5393690
  46. 46.
    Mnasri, K., Jeevanesan, B., Schmalian, J.: Critical phenomena in hyperbolic space. Phys. Rev. B 92, 134423 (2015). 1507.02909v1.pdf CrossRefADSGoogle Scholar
  47. 47.
    Chu, C.W., Chen, F., Shulman, J., Tsui, S., Xue, Y.Y., Wen, W., Sheng, P.: A negative dielectric constant in nano-particle materials under an electric field at very low frequencies. In: Proceedings of SPIE 5932, Strongly Correlated Electron Materials: Physics and Nanoengineering, 59320X (2005). doi: 10.1117/12.626267
  48. 48.
    Smolyaninov, I.I.: Quantum topological transition in hyperbolic metamaterials based on high Tc superconductors. J. Phys. Condens. Matter 26, 305701 (2014). doi: 10.1088/0953-8984/26/30/305701
  49. 49.
    Smolyaninov, I.I., Smolyaninova, V.N.: Is there a metamaterial route to high temperature superconductivity? Adv. Condens. Matter Phys, 1–6 (2014). doi: 10.1155/2014/479635
  50. 50.
    Smolyaninova, V.N., Yost, B., Zander, K., Osofsky, M.S., Kim, H., Saha, S., Greene, R.L., Smolyaninov, I.I.: Experimental demonstration of superconducting critical temperature increase in electromagnetic metamaterials. Scientific Reports 4, 7321 (2014). doi: 10.1038/srep07321 CrossRefADSGoogle Scholar
  51. 51.
    Poddubny, A.N., Rybin, M.V., Limonov, M.F., Kivshar, Y.S.: Fano interference governs wave transport in disordered systems. Nat. Commun. 3, 914 (2012). doi: 10.1038/ncomms1924 CrossRefADSGoogle Scholar
  52. 52.
    Kim, M., Choi, Y., Yoon, C., Choi, W., Kim, J., Park, Q.-H., Choi, W.: Maximal energy transport through disordered media with the implementation of transmission eigenchannels. Nat. Photonics 6, 583–587 (2012). doi: 10.1038/nphoton.2012.159 CrossRefADSGoogle Scholar
  53. 53.
    Bliokh, K., Bliokh, Y., Freilikher, V., Savel’ev, S., Nori, F.: Colloquium: unusual resonators: plasmonics, metamaterials, and random media. Rev. Mod. Phys. 80, 1201–1213 (2008). doi: 10.1103/revmodphys.80.1201 CrossRefADSGoogle Scholar
  54. 54.
    Bianconi, A., Jarlborg, T.: Lifshitz transitions and zero point lattice fluctuations in sulfur hydride showing near room temperature superconductivity. Novel Superconducting Materials 1, 1 (2015). doi: 10.1515/nsm-2015-0006. arXiv:1507.01093
  55. 55.
    Bianconi, A., Jarlborg, T.: Superconductivity above the lowest Earth temperature in pressurized sulfur hydride EPL (Europhysics Letters) in press (2015). arXiv:1510.05264
  56. 56.
    Caivano, R., Fratini, M., Poccia, N., Ricci, A., Puri, A., Ren, Z.-A., Dong, X.-L., Yang, J., Lu, W., Zhao, Z.-X., Barba, L., Bianconi, A.: Feshbach resonance and mesoscopic phase separation near a quantum critical point in multiband FeAs-based superconductors. Supercond. Sci. Technol. 22, 014004 (2009). doi: 10.1088/0953-2048/22/1/014004 CrossRefADSGoogle Scholar
  57. 57.
    Bianconi, A.: Feshbach shape resonance in multiband superconductivity in heterostructures. J. Supercond. 18, 625–636 (2005). doi: 10.1007/s10948-005-0047-5 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of Crystallography, CNRRomeItaly
  2. 2.RICMASS Rome International Center for Materials Science SuperstripesRomeItaly
  3. 3.INSTM, Italian Interuniversity Consortium on Materials Science and Technology, UDRRomeItaly

Personalised recommendations