Advertisement

Superconducting Transition Temperature Modulation in NbN via EDL Gating

  • E. Piatti
  • A. Sola
  • D. DagheroEmail author
  • G. A. Ummarino
  • F. Laviano
  • J. R. Nair
  • C. Gerbaldi
  • R. Cristiano
  • A. Casaburi
  • R. S. Gonnelli
Original Paper

Abstract

We perform electric double-layer gating experiments on thin films of niobium nitride. Thanks to a cross-linked polymer electrolyte system of improved efficiency, we induce surface charge densities as high as ≈ 2.8 × 1015cm−2 in the active channel of the devices. We report a reversible modulation of the superconducting transition temperature (either positive or negative depending on the sign of the gate voltage) whose magnitude and sign are incompatible with the confinement of the perturbed superconducting state to a thin surface layer, as would be expected within a na¨ıve screening model.

Keywords

EDL gating Superconductivity Thin films Niobium nitride Screening 

References

  1. 1.
    Ye, J.T., et al.: Nature Mater. 9, 125–128 (2010)CrossRefADSGoogle Scholar
  2. 2.
    Ueno, K., et al.: J. Phys. Soc. Jpn. 83(3), 032001 (2014)CrossRefADSGoogle Scholar
  3. 3.
    Ueno, K., et al.: Nature Mater. 7, 855–858 (2008)CrossRefADSGoogle Scholar
  4. 4.
    Ye, J.T., et al.: Science 338, 1193 (2012)CrossRefADSGoogle Scholar
  5. 5.
    Katase, T., et al.: Proc. Natl. Acad. Sci. U.S.A. 111, 11 (2014)CrossRefGoogle Scholar
  6. 6.
    Bollinger, A.T., et al.: Nature 472, 458–460 (2011)CrossRefADSGoogle Scholar
  7. 7.
    Leng, X., et al.: Phys. Rev. Lett. 107, 027001 (2011)CrossRefADSGoogle Scholar
  8. 8.
    Leng, X., et al.: Phys. Rev. Lett. 108, 067004 (2012)CrossRefADSGoogle Scholar
  9. 9.
    Daghero, D., et al.: Phys. Rev. Lett. 108, 066807 (2012)CrossRefADSGoogle Scholar
  10. 10.
    Tortello, M., et al.: Appl. Surf. Sci. 269, 17 (2013)CrossRefADSGoogle Scholar
  11. 11.
    Glover, R.E., Sherrill, M.D.: Phys. Rev. Lett. 5, 248 (1960)CrossRefADSGoogle Scholar
  12. 12.
    Stadler, H.L.: Phys. Rev. Lett. 14, 979 (1965)CrossRefADSGoogle Scholar
  13. 13.
    Nigro, A., et al.: Phys. Rev. B 37, 3970 (1998)Google Scholar
  14. 14.
    Chockalingam, S.P., et al.: Phys. Rev. B 77, 214503 (2008)CrossRefADSGoogle Scholar
  15. 15.
    Inzelt, G.: Electroanalytical methods. In: Scholz, F. (ed.) Guide to Experiments and Applications. 2nd edn., Ch. II.4 Chronocoulometry, pp 147–158. Springer (2010)Google Scholar
  16. 16.
    Giannozzi, P., et al.: J. Phys. Condens. Matter 21, 395502 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • E. Piatti
    • 1
  • A. Sola
    • 1
  • D. Daghero
    • 1
    Email author
  • G. A. Ummarino
    • 1
    • 4
  • F. Laviano
    • 1
  • J. R. Nair
    • 1
  • C. Gerbaldi
    • 1
  • R. Cristiano
    • 2
  • A. Casaburi
    • 3
  • R. S. Gonnelli
    • 1
  1. 1.Department of Applied Science and TechnologyPolitecnico di TorinoTorinoItaly
  2. 2.CNR-SPIN Institute of Superconductors, Innovative Materials and Devices, UOS-NapoliNapoliItaly
  3. 3.School of EngineeringUniversity of GlasgowGlasgowUK
  4. 4.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoskvaRussia

Personalised recommendations