Nonequilibrium Dynamical Mean-Field Theory for the Charge-Density-Wave Phase of the Falicov-Kimball Model

  • O. P. Matveev
  • A. M. Shvaika
  • T. P. Devereaux
  • J. K. Freericks
Original Paper

Abstract

Nonequilibrium dynamical mean-field theory (DMFT) is developed for the case of the charge-density-wave ordered phase. We consider the spinless Falicov-Kimball model which can be solved exactly. This strongly correlated system is then placed in an uniform external dc electric field. We present a complete derivation for nonequilibrium dynamical mean-field theory Green’s functions defined on the Keldysh-Schwinger time contour. We also discuss numerical issues involved in solving the coupled equations.

Keywords

Nonequilibrium DMFT Charge ordering Falicov-Kimball model 

References

  1. 1.
    Perucchi, A., Degiorgi, L., Thorne, R.E.: Phys. Rev. B 69, 195114 (2004)CrossRefADSGoogle Scholar
  2. 2.
    Dordevic, S.V., Basov, D.N., Dynes, R.C., Ruzicka, B., Vescoli, V., Degiorgi, L., Berger, H., Gaál, R., Forró, L., Bucher, E.: European Phys. J. B 33, 15 (2003)CrossRefADSGoogle Scholar
  3. 3.
    Tajima, S., Uchida, S., Masaki, A., Takagi, H., Kitazawa, K., Tanaka, S., Katsui, A.: Phys. Rev. B 32, 6302 (1985)CrossRefADSGoogle Scholar
  4. 4.
    Karlow, M.A., Cooper, S.L., Kotz, A.L., Klein, M.V., Han, P.D., Payne, D.A.: Phys. Rev. B 48, 6499 (1993)CrossRefADSGoogle Scholar
  5. 5.
    Hellmann, S., Beye, M., Sohrt, C., Rohwer, T., Sorgenfrei, F., Redlin, H., Kalläne, M., Marczynski-Bühlow, M., Hennies, F., Bauer, M., Föhlisch, A., Kipp, L., Wurth, W., Rossnagel, K.: Phys. Rev. Lett. 105, 187401 (2010)CrossRefADSGoogle Scholar
  6. 6.
    Petersen, J.C., Kaiser, S., Dean, N., Simoncig, A., Liu, H.Y., Cavalieri, A.L., Cacho, C., Turcu, I.C.E., Springate, E., Frassetto, F., Poletto, L., Dhesi, S.S., Berger, H., Cavalleri, A.: Phys. Rev. Lett. 107, 177402 (2011)CrossRefADSGoogle Scholar
  7. 7.
    Shen, W., Ge, Y., Liu, A.Y., Krishnamurthy, H.R., Devereaux, T.P., Freericks, J.K.: Phys. Rev. Lett. 112, 176404 (2014)CrossRefADSGoogle Scholar
  8. 8.
    Shen, W., Devereaux, T.P., Freericks, J.K.: Phys. Rev. B 89, 235129 (2014)CrossRefADSGoogle Scholar
  9. 9.
    Falicov, L.M., Kimball, J.C.: Phys. Rev. Lett. 22, 997 (1969)CrossRefADSGoogle Scholar
  10. 10.
    Brandt, U., Mielsch, C.: Z. Phys. B: Condens. Matter 75, 365 (1989)CrossRefADSGoogle Scholar
  11. 11.
    Freericks, J.K., Zlatić, V.: Rev. Mod. Phys. 75, 1333 (2003)CrossRefADSGoogle Scholar
  12. 12.
    Kadanoff, L.P., Baym, G.: Quantum Statistical Mechanics. W. A. Benjamin Inc., New York (1962)MATHGoogle Scholar
  13. 13.
    Keldysh, L.V.: J. Exp. Theor. Phys. 47, 1515 (1964). [Sov. Phys. JETP 20, 1018 (1965)]Google Scholar
  14. 14.
    Langreth, D.C.: In: Devreese, J.T., van Doren, V.E. (eds.) Linear and Nonlinear Electron Transport in Solids. Plenum, New York and London (1976)Google Scholar
  15. 15.
    Metzner, W.: Phys. Rev. B 43, 8549 (1991)CrossRefADSGoogle Scholar
  16. 16.
    Jarrell, M.: Phys. Rev. Lett. 69, 168 (1992)CrossRefADSGoogle Scholar
  17. 17.
    Freericks, J.K., Turkowski, V., Zlatić, V.: Phys. Rev. Lett. 97, 266408 (2006)CrossRefADSGoogle Scholar
  18. 18.
    Freericks, J.K.: Phys. Rev. B 77, 075109 (2008)CrossRefADSGoogle Scholar
  19. 19.
    Turkowski, V., Freericks, J.K.: Phys. Rev. B 71, 085104 (2005)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • O. P. Matveev
    • 1
    • 2
  • A. M. Shvaika
    • 2
  • T. P. Devereaux
    • 3
    • 4
  • J. K. Freericks
    • 1
  1. 1.Department of PhysicsGeorgetown UniversityWashingtonUSA
  2. 2.Institute for Condensed Matter Physics of NAS of UkraineLvivUkraine
  3. 3.McCullough Building, Geballe Laboratory for Advanced MaterialsStanfordUSA
  4. 4.Central Lab BuildingSLAC National Accelerator LaboratoryMenlo ParkUSA

Personalised recommendations