Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 29, Issue 1, pp 207–213 | Cite as

Enhancement of Refrigeration Capacity and Table-Like Magnetocaloric Effect in LaFe 10.7Co 0.8Si 1.5/ La 0.6Pr 0.4Fe 10.7Co 0.8Si 1.5 Composite

  • Rafik M’nassri
Original Paper

Abstract

In this work, we have investigated the magnetocaloric effect (MCE) in a two-phase composite system (LaFeCoSi) 1−x /(LaPrFeCoSi) x based on LaFe 10.7 Co 0.8Si 1.5 and La 0.6Pr 0.4Fe 10.7Co 0.8Si 1.5 with Curie temperature values 275 and 295 K, respectively. The temperature dependence of the isothermal magnetic entropy change, ΔS(T), has been calculated for the biphasic system with 0<x<1. The optimum MCE properties, i.e., a ΔS(T) curve with table-like shape, has been found in the temperature interval of 271–287 K for the composite with x = 0.45 at 5 T. The |ΔS M| of the composite come close to a constant value of 9.78 J/(kg K) in a field change of 0–5 T in a wide temperature span over 16 K resulting in large refrigerant capacity value of ∼534.45 J/kg. This composite can be used as the working material in the Ericsson cycle magnetic regenerative refrigerator. Our findings constitute a good starting point to stimulate the search for new composites with enhanced MCE properties near room temperature.

Keywords

Composite Magnetocaloric effect Table-like 

Notes

Acknowledgments

This study was supported by the Tunisian Ministry of Higher Education and Scientific Research.

References

  1. 1.
    Pecharsky, V.K., Gschneiner, K.A.: Magnetocaloric effect and magnetic refrigeration. J. Magn. Magn. Mater. 200, 44–56 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    Choura Maatar, S., M’nassri, R., Cheikhrouhou Koubaa, W., Koubaa, M., Cheikhrouhou, A.: Structural, magnetic and magnetocaloric properties of La 0.8Ca 0.2−xNa xMnO 3 manganites (0 = x = 0.2). J. Solid State Chem. 225, 83 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    Shen, B.G., Sun, J.R., Hu, F.X., Zhang, H.W., Cheng, Z.H.: Recent progress in exploring magnetocaloric materials. Adv. Mater. 21, 4545 (2009)CrossRefGoogle Scholar
  4. 4.
    Bruck, E.: Developments in magnetocaloric refrigeration. J. Phys. D, Appl. Phys. 38, R381 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    Gschneidner Jr., K.A., Pecharsky, V.K., Tsokol, A.O.: Recent developments in magnetocaloric materials. Rep. Progr. Phys. 68, 1479 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Gschneidner Jr., K.A., Pecharsky, V.K.: The influence of magnetic field on the thermal properties of solids. Mater. Sci. Eng. A 287, 301 (2000)CrossRefGoogle Scholar
  7. 7.
    Gschneidner Jr., K.A., Pecharsky, V.K.: Magnetic refrigeration materials. J. Appl. Phys. 85, 5365 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    M’nassri, R., Chniba Boudjada, N., Cheikhrouhou, A.: Impact of sintering temperature on the magnetic and magnetocaloric properties in Pr 0.5Eu 0.1Sr 0.4MnO 3 manganites. J. Alloys Comp. 626, 20 (2015)CrossRefGoogle Scholar
  9. 9.
    M’nassri, R., Cheikhrouhou, A.: Magnetocaloric properties in ordered double-perovskite Ba 2Fe 1−xCr xMoO 6 (0 = x = 1). Journal of the Korean Physical Society 64, 879 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Selmi, A., M’nassri, R., Cheikhrouhou-Koubaa, W., Chniba Boudjada, N., Cheikhrouhou, A.: The effect of Co doping on the magnetic and magnetocaloric properties of Pr 0.7 Ca 0.3Mn 1−xCo x O 3 manganites. Ceram. Int. 41, 7723 (2015)CrossRefGoogle Scholar
  11. 11.
    Pecharsky, V.K., Gschneidner Jr., K.A.: Giant magnetocaloric effect in Gd 5(Si 2Ge 2). Phys. Rev. Lett. 78, 4494 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    Hu, F.X., Shen, B., Sun, J., Cheng, Z.: Large magnetic entropy change in La(Fe, Co ) 11.83Al 1.17. Phys. Rev. B 64, 132412 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    Hu, F.X., Shen, B.G., Sun, J.R.: Magnetic entropy change in Ni5 1.5Mn 22.7Ga 25.8 alloy. Appl. Phys. Lett. 76, 3460 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    Tegus, O., Bruck, E., Buschow, K.H.J., De Boer, F.R.: Transition-metal-based magnetic refrigerants for room-temperature applications. Nature (London) 415, 150 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    Hu, F.X., Shen, B.G., Sun, J.R., Cheng, Z.H., Rao, G.H., Zhang, X.X.: Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe 11.4Si 1.6. Appl. Phys. Lett. 78, 3675 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    Bjørk, R., Bahl, C.R.H., Katter, M.: Magnetocaloric properties of LaFe 13−x−yCo xSi y and commercial grade Gd. J. Magn. Magn. Mater. 322, 3882 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Fujieda, S., Fujita, A., Fukamichi, K.: Large magnetocaloric effect in La(Fe xSi 1−x)13 itinerant-electron metamagnetic compounds. Appl. Phys. Lett. 81, 1276 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Phan, M.H., Yu, S.C.: Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    M’nassri, R., Cheikhrouhou-Koubaa, W., Koubaa, M., Boudjada, N., Cheikhrouhou, A.: Magnetic and magnetocaloric properties of Pr 0.6−xEu xSr 0.4MnO 3 manganese oxides. Solid State Commun. 151, 1579 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    M’nassri, R., Cheikhrouhou-Koubaa, W., Chniba-Boudjada, N., Cheikhrouhou, A.: Effect of barium-deficiency on the structural, magnetic, and magnetocaloric properties of La 0.6 Sr 0.2Ba\(_{0.2-x}{\square }_{\mathrm {x}}\)MnO 3 (0 = x = 0.15). J. Appl. Phys. 113, 073–905 (2013)Google Scholar
  21. 21.
    M’nassri, R., Cheikhrouhou-Koubaa, W., Boudjada, N., Cheikhrouhou, A.: Magnetocaloric Effects in Pr 0.6−x Er x Sr 0.4MnO 3 (0.0 =x=0.2) Manganese Oxides. J. Supercond. Nov. Magn. 26, 1429 (2013)CrossRefGoogle Scholar
  22. 22.
    M’nassri, R., Cheikhrouhou, A.: Magnetocaloric effect in different impurity doped La 0.67Ca 0.33MnO 3 composite. J Supercond. Nov. Magn. 27, 421 (2014)CrossRefGoogle Scholar
  23. 23.
    Selmi, A., M’nassri, R., Cheikhrouhou-Koubaa, W., Chniba Boudjada, N., Cheikhrouhou, A.: Influence of transition metal doping (Fe, Co, Ni and Cr) on magnetic and magnetocaloric properties of Pr 0.7Ca 0.3MnO 3 manganites. Ceram. Int. 41, 10177 (2015)CrossRefGoogle Scholar
  24. 24.
    Yu, B.F., Gao, Q., Zhang, B., Meng, X.Z., Chen, Z.: Review on research of room temperature magnetic refrigeration. Int. J. Refrig. 26, 622 (2003)CrossRefGoogle Scholar
  25. 25.
    Álvarez, P., Sánchez Llamazares, J.L., Gorria, P., Blanco, J.A.: Enhanced refrigerant capacity and magnetic entropy flattening using a two-amorphous FeZrB(Cu) composite. Appl. Phys. Lett. 99, 232501 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Mbarek, H., M’nasri, R., Cheikhrouhou-Koubaa, W., Cheikhrouhou, A.: Magnetocaloric effect near room temperature in (1-y)La 0.8Ca 0.05 K 0.15MnO 3/yLa 0.8 K 0.2MnO 3 composites. Phys. Status Solidi 211, 975 (2014)CrossRefGoogle Scholar
  27. 27.
    M’nassri, R.: Field dependence of magnetocaloric properties in La 0.6Pr 0.4Fe 10.7Co 0.8Si 1.5. J. Supercond. Nov. Magn. 27, 1787 (2014)CrossRefGoogle Scholar
  28. 28.
    Álvarez, P., Gorria, P., Franco, V., Sánchez Marcos, J., Pérez, M.J., Sánchez Llamazares, J.L., Puente-Orench, I., Blanco, J.A.: Nanocrystalline Nd2Fe17 synthesized by high-energy ball milling: crystal structure, microstructure and magnetic properties. J. Phys.: Condens. Matter 22, 216005 (2010)ADSGoogle Scholar
  29. 29.
    Álvarez, P., Gorria, P., Sánchez Llamazares, J.L., Pérez, M.J., Franco, V., Reiffers, M., Čurlik, I., Gažo, E., Kováč, J., Blanco, J.A.: Magnetic properties and magnetocaloric effect in pseudo-binary intermetallic (Ce, R) 2Fe 17 compounds (R = Y, Pr and Dy). Intermetallics 19, 982 (2011)CrossRefGoogle Scholar
  30. 30.
    Świerczek, J., Mydlarz, T.: Magnetic entropy changes at early stages of nanocrystallization in amorphous Fe 90Zr 7 B 3 ribbons. J. Alloys Compd. 509, 9340 (2011)CrossRefGoogle Scholar
  31. 31.
    Shen, J., Gao, B., Dong, Q.-Y., Li, Y.-X., Hu, F.-X., Sun, J.-R., Shen, B.-G.: Magnetocaloric effect in La1−xPrxFe10.7Co0.8 Si1.5 compounds near room temperature. J. Phys. D: Appl. Phys. 41, 245005 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    Hamad, M.A.: Prediction of thermomagnetic properties of La 0.67Ca 0.33MnO 3 and La 0.67 Sr 0.33 MnO 3. Phase Transit. 85, 106 (2012)CrossRefGoogle Scholar
  33. 33.
    M’nassri, R., Cheikhrouhou, A.: Magnetocaloric effect in LaFe 10.7Co 0.8Si 1.5 compound near room temperature. J. Supercond. Nov. Magn. 27, 1059 (2014)CrossRefGoogle Scholar
  34. 34.
    Paticopoulos, S.C., Caballero-Flores, R., Franco, V., Blazquez, J.S., Conde, A., Knipling, K.E., Willard, M.A.: Enhancement of the magnetocaloric effect in composites: experimental validation. Solid State Commun. 152, 1590–1594 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Smaili, A., Chahine, R: Thermodynamic investigations of optimum active magnetic regenerators. Cryogenics 38, 247 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    Takeya, H., Pecharsky, V.K., Gschneidner, K.A., Moorman, J.O.: New type of magnetocaloric effect: implications on low-temperature magnetic refrigeration using an Ericsson cycle. Appl. Phys. Lett. 64, 2739 (1994)ADSCrossRefGoogle Scholar
  37. 37.
    Tishin, A.M., Spichkin, Y.I.: The magnetocaloric effect and its applications. IOP Publishing, Bristol (2003)CrossRefGoogle Scholar
  38. 38.
    Gschneidner Jr., K.A., Pecharsky, V.K., Tsokol, A.O.: Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    Gorria, P., Sánchez Llamazares, J.L., Álvarez, P., Pérez, M.J., Sánchez Marcos, J., Blanco, J.A.: Relative cooling power enhancement in magneto-caloric nanostructured Pr2Fe17. J. Phys. D: Appl. Phys. 41, 192003 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    Barclay, J.A.: Active and passive magnetic regenerators in gas/magnetic refrigerator. J. Alloys Comp. 207–208, 355 (1994)CrossRefGoogle Scholar
  41. 41.
    M’nassri, R., Chniba Boudjada, N., Cheikhrouhou, A.: 3D-Ising ferromagnetic characteristics and magnetocaloric study in Pr 0.4Eu 0.2Sr 0.4MnO 3 manganite. J. Alloys Compd. 640, 183 (2015)CrossRefGoogle Scholar
  42. 42.
    Selmi, A., M’nassri, R., Cheikhrouhou-Koubaa, W., Chniba Boudjada, N., Cheikhrouhou, A.: Effects of partial Mn-substitution on magnetic and magnetocaloric properties in Pr0.7Ca0.3Mn0.95X0.05O3 (Cr, Ni, Co and Fe) manganites. J. Alloys Compd. 619, 627–633 (2015)CrossRefGoogle Scholar
  43. 43.
    Wood, M.E., Potter, W.H.: General analysis of magnetic refrigeration and its optimization using a new concept: maximization of refrigerant capacity. Cryogenics 25, 667 (1985)ADSCrossRefGoogle Scholar
  44. 44.
    Wang, J.J., Han, Z.D., Tao, Q., Qian, B., Zhang, P., Jiang, X.F.: Constant magnetothermal response in two-layered perovskite (La 1−xGd x)1.4Ca 1.6Mn 2 O 7. Physica B 416, 76–80 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    Aliev, A.M., Gamzatov, A.G., Kamilov, K.I., Kaul, A.R., Babushkina, N.A.: Magnetocaloric properties of La0.7Ca0.3Mn16O3 and La0.7Ca0.3Mn18O3 manganites and their “sandwich”. Appl. Phys. Lett. 101, 172401 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Higher Institute of Applied Sciences and Technology of KasserineKairouan UniversityKasserineTunisia
  2. 2.Laboratoire de Physico-Chimie des Matériaux, Département de Physique, Faculté des Sciences de MonastirUniversité de MonastirMonastirTunisia

Personalised recommendations