Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 28, Issue 10, pp 2899–2906 | Cite as

Magnetic and Magnetocaloric Properties of Pr0.8Bi0.2Fe x Mn1−x O3 Compounds with 0 ≤ x ≤ 0.3

  • Kh. SbissiEmail author
  • M. L. Kahn
  • M. Ellouze
  • F. Elhalouani
Letter

Abstract

This paper studies the effects of the Mn site substitution by Fe on the magnetic properties and the magnetocaloric properties of Pr0.8Bi0.2Fe x Mn1−x O3 elaborated by a sol–gel method. The variation of the magnetization as a function of temperature and applied magnetic field was carried out. Magnetic measurements show that all the materials exhibit a paramagnetic–ferromagnetic transition when the temperature decreases. The dependence of the Curie temperature (T C) and the magnetic entropy change (ΔS M) when varying the Fe doping content was investigated. The measured value of TC was 114, 97, 94, and 77 K for x = 0, 0.1, 0.2, and 0.3, respectively. The samples with x = 0 and x = 0.1 present a second-order phase transition, while the samples with x = 0.2 and x = 0.3 exhibit a first-order phase transition. As the concentration of Fe increases, the maximum entropy change,\({\Delta } S_{\mathrm {M}}^{\max }\), decreases gradually, from 2.77 J kg−1 K−1 (x = 0) to 1.05 J kg−1 K−1 (x = 0.3), when the magnetic field changes from 0 to 5 T.

Keywords

Magnetocaloric effect Magnetic properties Relative cooling power Sol–gel method 

Notes

Acknowledgments

This study has been supported by the Tunisian Ministry of Scientific Research and Technology, the Laboratory of Coordination Chemistry Toulouse, and the Neel Institute. This research was also supported by the Centre National de la Recherche Scientifique, CNRS.

References

  1. 1.
    Zhang, X.X., Tejada, J., Xin, Y., Sun, G.F., Wong, W., Bohigas, X.: Appl. Phys. Let. 69, 3596 (1996)CrossRefADSGoogle Scholar
  2. 2.
    Xu, Y., Meier, M., Das, P., Koblischka, M.R., Hartmann, U.: Cryst. Eng. 53, 83 (2002)Google Scholar
  3. 3.
    Amaral, J.S., et al.: Magn. Magn. Mater. 290, 686 (2005)CrossRefADSGoogle Scholar
  4. 4.
    Seikh, M.M., Sudheendra, L., Rao, C.N. R.: J. Solid State Chem. 177, 3633 (2004)CrossRefADSGoogle Scholar
  5. 5.
    Wang, Z.M., Ni, G., Xu, Q.Y, Sang, H., Du, W.: J. Appl. Phys. 90, 5689 (2001)CrossRefADSGoogle Scholar
  6. 6.
    Ben Jemaa, F , Mahmood, S.H., Ellouze, M., Hlil, E.K., Halouani, F.: J. Mater. Sci. 49, 6883 (2014)CrossRefADSGoogle Scholar
  7. 7.
    Tian, S.B., Phan, M.H., Yu, S.C., Hwi Hur, N.: Phys. B 327, 221 (2003)CrossRefADSGoogle Scholar
  8. 8.
    Dhahri, R., Abdelmoula, N., Dhahri, E., El Halouani, F., Hussein, M.: Phase. Trans. 76, 219 (2003)CrossRefGoogle Scholar
  9. 9.
    Abdelmoula, N., Dhahri, E., Fourati, N., Reversat, L.: J. Alloys Compd. 25, 365 (2004)Google Scholar
  10. 10.
    Cherif, R., Hlil, E.K., Ellouze, M., Elhalouani, F., Obbade, S.: J. Mater. Sci. 4, 8533 (2014)Google Scholar
  11. 11.
    Zi, Z.F., Sun, Y.P., Zhu, X.B., Yang, Z.R., Dai, J.M., Song, W.H.: Magn. Magn. Mater. 321, 2378 (2009)CrossRefADSGoogle Scholar
  12. 12.
    Luo, Y., et al.: Appl. Phys. Lett. 83, 440 (2005)CrossRefADSGoogle Scholar
  13. 13.
    Zi, Z.F., et al.: J. Alloys Compd. 477, 414 (2009)CrossRefGoogle Scholar
  14. 14.
    Rostamnejadi, A., Salamati, H., Kameli, P., Ahmadvand, H.J.: Magn. Magn. Mater 321, 3126 (2009)CrossRefADSGoogle Scholar
  15. 15.
    Chen, T.Y., Fung, K.Z.: J. Eur. Ceram. Soc. 28, 803 (2008)CrossRefGoogle Scholar
  16. 16.
    Jonker, G.H., Van Santen, J.H.: Physica 16, 337 (1950)CrossRefADSGoogle Scholar
  17. 17.
    Kameli, P., Salamati, H., Aezami, A.: J. Alloys Compd. 7, 450 (2008)Google Scholar
  18. 18.
    Cui, H., Zayat, M., Levy, D.: J. Sol-Gel Sci. Technol. 35, 175 (2005)CrossRefGoogle Scholar
  19. 19.
    Gash, A.E., Tillotson, T.M., Satcher, J.H., Pooch, J.F., Hrubesh, L.W., Simpson, R.L.: Chem. Mater. 33, 999 (2001)CrossRefGoogle Scholar
  20. 20.
    Pechini, M.P.: U.S. Patent 3, 330 (1967)Google Scholar
  21. 21.
    Gaudon, M., Laberty Robert, C., Ansart, F., Stevens, P., Rousset, A.: Solid State Sci. 4, 125 (2002)CrossRefADSGoogle Scholar
  22. 22.
    Kundu, A.K., Pralong, V., Caignaert, V., Rao, C.N.R., Raveau, B.: J. Mater. Chem. 17, 3347 (2007)CrossRefGoogle Scholar
  23. 23.
    Borchert, Y., Sonstro1m, P., Wilhelm, M., Borchert, H., Ba1umer, M.: J. Phys. Chem. 112, 3054 (2008)Google Scholar
  24. 24.
    Ahn, K.H., Wu, X.W., Liu, K., Cn, L.: J. Chien Appl. Phys. 81, 5505 (1997)CrossRefADSGoogle Scholar
  25. 25.
    Ajan, A., Venkateramani, N., Prasad, S., Shringi, S.N., Nigam, A.K., Pinto, R.: J. Appl. Phys. 83, 7169 (1998)CrossRefADSGoogle Scholar
  26. 26.
    Kanamori, J.: J. Phys. Chem. 10, 87 (1959)Google Scholar
  27. 27.
    Goodenough, J.B.: Phys. Rev. B 100, 564 (1955)CrossRefADSGoogle Scholar
  28. 28.
    Morrish, A.H.: The Physical Principles of Magnetism. IEEE Press, New York (2001)CrossRefGoogle Scholar
  29. 29.
    Martinez, B., Laukhin, V., Fontcuberta, J., Pinsard, L., Revcolevschi, A.: Phys. Rev. B 054436, 66 (2002)Google Scholar
  30. 30.
    Cherif, R., Hlil, E.K., Ellouze, M., Elhalouani, F., Obbade, S.: J. Solid State Chem. 215, 271 (2014)CrossRefADSGoogle Scholar
  31. 31.
    Issaoui, F., Tlili, M.T., Bejar, M., Dhahri, E., Hlil, E.K.: J. Supercond. Novel. Mag. 25, 1169 (2012)CrossRefGoogle Scholar
  32. 32.
    Nasri, A., Zouari, S., Ellouze, M., Rehspringer, J.L., Lehlooh, A.F.: J. Supercond. Novel Mag. 27, 443 (2014)CrossRefGoogle Scholar
  33. 33.
    Banerjee, S.K.: Phys. Lett. 12, 16 (1964)CrossRefADSGoogle Scholar
  34. 34.
    Phan, M.H., Yu, S.C., Hur, N.H.: Appl. Phys. Lett. 86, 072504 (2005)CrossRefADSGoogle Scholar
  35. 35.
    Phan, M.H., Yu, S.C.: J Magn. Magn. Mater 308, 325 (2007)CrossRefADSGoogle Scholar
  36. 36.
    Tokura, Y.: Fundamental Features of Colossal Magnetoresistive Manganese Oxides (Amsterdam: Gordon and Breach) (ed) (2000)Google Scholar
  37. 37.
    Pecharsky, V.K., Gschneidner, K.A.: Phys. Rev. Lett. 78, 4494 (1997)CrossRefADSGoogle Scholar
  38. 38.
    Gschneidner, K.A., Pecharsky, V.K.: AnnuRev. Mater. Sci. 30, 387 (2000)CrossRefADSGoogle Scholar
  39. 39.
    Phan, M.H., Peng, H.X, Yu, S.C., Hanh, D.T., Tho, N.D, Chau, N.J.: Appl. Phys. 99, 108 (2006)Google Scholar
  40. 40.
    Wang, Z., Jiang, J.: SolidState Sci. 36, 12 (2013)Google Scholar
  41. 41.
    Morelli, D.T., Mance, A.M., Mantese, J.V., Micheli, A.L.: J. Appl. Phys. 79, 373 (1996)CrossRefADSGoogle Scholar
  42. 42.
    Gomes, A.M., Garcia, F., Guimaraes, A.P., Reis, M.S., Amaral, V.S., Tavares, P.B.: J. Magn. Magn. Mater 694, 290 (2005)Google Scholar
  43. 43.
    Pecharsky, V.K., Gschneidner, K.A.: Rep A O Tsokol Prog. Phys. 68, 1479 (2005)CrossRefADSGoogle Scholar
  44. 44.
    Li, L., Nishimura, K., Hutchison, W.D., Mori, K.: J. Phys. D 41, 175002 (2008)CrossRefADSGoogle Scholar
  45. 45.
    Nam, D.N.H., et al.: J. Appl. Phys. 103, 043905 (2008)CrossRefADSGoogle Scholar
  46. 46.
    Li, L., Nishimura, K., Fujii, M., Mori, K.: Solid State Commun. 10, 144 (2007)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Kh. Sbissi
    • 1
    Email author
  • M. L. Kahn
    • 2
  • M. Ellouze
    • 3
  • F. Elhalouani
    • 1
  1. 1.National Engineering School of SfaxUniversity of SfaxSfaxTunisia
  2. 2.Laboratory of Coordination ChemistryToulouseFrance
  3. 3.Faculty of SciencesUniversity of SfaxSfaxTunisia

Personalised recommendations