Journal of Superconductivity and Novel Magnetism

, Volume 28, Issue 12, pp 3429–3437 | Cite as

Towards a Hybrid High Critical Temperature Superconductor Junction With a Semiconducting InAs Nanowire Barrier

  • Domenico Montemurro
  • Davide Massarotti
  • Procolo Lucignano
  • Stefano Roddaro
  • Daniela Stornaiuolo
  • Daniele Ercolani
  • Lucia Sorba
  • Arturo Tagliacozzo
  • Fabio Beltram
  • Francesco Tafuri
Letter

Abstract

We investigate a new architecture for the implementation of Josephson junctions combining high critical temperature superconductors (HTS) and semiconductor (Sm) nanowires (NWs). The devices are obtained starting from pre-patterned YBaCuO (YBCO) electrodes and assembling suspended InAs-NWs bridges between nearby superconductive banks. Such a non-standard approach is necessary in the case of HTS since growth conditions for cuprates are incompatible with thermal stability of the Sm nanostructures. We investigate the device behavior as a function of the length L of the InAs bridge. For L > 200 nm, all junctions display a tendency to insulation at low temperatures. For L ∼ 200 nm, a metallic-like behavior is obtained, signaling the possible onset of a superconductive transition of the junction. Technological limitations on the width of the gap separating the YBCO banks currently prevent a further scaling. Our results suggest that a further reduction of the size of the trench between the YBCO electrodes can lead to functional YBCO/InAs-NWs/YBCO Josephson junctions.

Keywords

High TC superconductors Nanowires Semiconducting barriers Hybrid nanostructures 

Notes

Acknowledgments

This work is supported by POR Campania FSE 2007-2013 “Materiali e Strutture Intelligenti” MASTRI, by COST Action MP1201 [NanoSC COST] and Progetto FIRB HybridNanoDev RBFR1236VV.

References

  1. 1.
    Barone, A., Paternó, G.: Physics and applications of the Josephson effect. Wiley, New York (1982)CrossRefGoogle Scholar
  2. 2.
    Mannhart, J.: High-Tc transistors. Supercond. Sci. and Techn. 9, 49–67 (1996)CrossRefADSGoogle Scholar
  3. 3.
    De Franceschi, S., Kouwenhoven, L., Schonenberger, C., Wernsdorfer, W.: Hybrid superconductor quantum dot devices. Nat. Nanotechnol. 5, 703–711 (2010)CrossRefADSGoogle Scholar
  4. 4.
    McCumber, D.E.: Tunneling and weak link superconductor phenomena having potential device applications. J. Appl. Phys. 39, 2503 (1968)CrossRefADSGoogle Scholar
  5. 5.
    Tafuri, F., Kirtley, J.R.: High Tc Superconductor weak links. Rep. Prog. Phys. 68, 2573 (2005)CrossRefADSGoogle Scholar
  6. 6.
    Tafuri, F., Massarotti, D., Galletti, L., Stornaiuolo, D., Montemurro, D., Longobardi, L., Lucignano, P., Rotoli, G., Pepe, G.P., Tagliacozzo, A., Lombardi, F.: Recent achievements on the physics of high-T C superconductor Josephson junctions: background, perspectives and inspiration. J. Supercond. Nov. Magn. 26, 21 (2013)CrossRefGoogle Scholar
  7. 7.
    Doh, Y.J., van Dam, J.A., Roest, A.L., Bakkers, E.P.A.M., Kouwenhoven, L.P., De Franceschi, S.: Tunable supercurrent through semiconductor nanowires. Science 309(5732), 272–275 (2005)CrossRefADSGoogle Scholar
  8. 8.
    Xiang, J., Vidan, A., Tinkham, M., Westervelt, R.M., Lieber, C.M.: Ge/Si nanowire mesoscopic Josephson junctions. Nat. Nanotechnol. 1, 208 (2006)CrossRefADSGoogle Scholar
  9. 9.
    Jarillo-Herrero, P., van Dam, J.A., Kouwenhoven, L.P.: Quantum supercurrent transistors in carbon nanotubes. Nature 439, 953 (2006)CrossRefADSGoogle Scholar
  10. 10.
    Cleuziou, J.P., Wernsdorfer, W., Bouchiat, V., Ondarcuhu, T., Monthioux, M.: Carbon nanotube superconducting quantum interference device. Nat. Nanotechnol. 1, 53 (2006)CrossRefADSGoogle Scholar
  11. 11.
    Katsaros, G., Spathis, P., Stoffel, M., Fournel, F., Mongillo, M., Bouchiat, V., Lefloch, F., Rastelli, A., Schmidt, O.G., De Franceschi, S.: Hybrid superconductor/semiconductor devices made from self-assembled SiGe nanocrystals on silicon. Nat. Nanotechnol. 5, 458 (2010)CrossRefADSGoogle Scholar
  12. 12.
    Veldhorst, M., Snelder, M., Hoek, M., Gang, T., Wang, X.L., Guduru, V.K., Zeitler, U., Wiel, W. G.V.D., Golubov, A.A., Hilgenkamp, H., Brinkman, A.: Josephson supercurrent through a topological insulator surface state. Nat. Mater. 11, 417 (2012)CrossRefADSGoogle Scholar
  13. 13.
    Williams, J.R., Bestwick, A.J., Gallagher, P., Hong, S.S., Cui, Y., Bleich, A.S., Analytis, J.G., Fisher, I.R., Goldhaber-Gordon, D.: Unconventional Josephson effect in hybrid superconductor-topological insulator devices. Phys. Rev. Lett. 109, 056803 (2012)CrossRefADSGoogle Scholar
  14. 14.
    Galletti, L., Charpentier, S., Iavarone, M., Lucignano, P., Massarotti, D., Arpaia, R., Kadowaki, K., Bauch, T, Tagliacozzo, A., Tafuri, F., Lombardi, F.: Influence of topological edge states on the properties of Al/Bi2Se3/Al hybrid Josephson devices. Phys. Rev. B 89, 134512 (2014)CrossRefADSGoogle Scholar
  15. 15.
    Kurter, C., Finck, A.D.K., Ghaemi, P., Hor, Y.S., Van Harlingen, D.J.: Dynamical gate-tunable supercurrents in topological Josephson junctions. Phys. Rev. B 90, 014501 (2014)CrossRefADSGoogle Scholar
  16. 16.
    Montemurro, D., Stornaiuolo, D., Massarotti, D., Ercolani, D., Sorba, L., Beltram, F., Tafuri, F., Roddaro, S: Suspended InAs nanowire Josephson junctions assembled via dielectrophoresis; accepted by nanotecnology (2015)Google Scholar
  17. 17.
    Abay, S., Persson, D., Nilsson, H., Wu, F., Xu, H.Q., Fogelstrom, M., Shumeiko, V., Delsing, P.: Charge transport in InAs nanowire Josephson junctions. Phys. Rev. B 89, 214508 (2014)CrossRefADSGoogle Scholar
  18. 18.
    Likharev, K.K.: Superconducting weak links. Rev. Mod. Phys. 51, 1 (1979)CrossRefADSGoogle Scholar
  19. 19.
    Golubov, A.A., Kupryanov, M.Y., Ilichev, E.: The current-phase relation in Josephson junctions. Rev. Mod. Phys. 76, 411 (2004)CrossRefADSGoogle Scholar
  20. 20.
    Bergeret, F.S., Cuevas, J.C.: The vortex state and Josephson critical current of a diffusive SNS junction. J. Low Temp. Phys. 153, 304 (2008)CrossRefADSGoogle Scholar
  21. 21.
    Kashiwaya, S., Tanaka, Y.: Tunnelling effects on surface bound states in unconventional superconductors. Rep. Prog. Phys. 63, 1641 (2000)CrossRefADSGoogle Scholar
  22. 22.
    Kupriyanov, M.Y., Brinkman, A., Golubov, A.A., Siegel, M., Rogalla, H.: Double-barrier Josephson structures as the novel elements for superconducting large-scale integrated circuits. Physica C 326, 16 (1999)CrossRefADSGoogle Scholar
  23. 23.
    Kresin, V.Z.: Josephson current in low-dimensional proximity systems and the field effect. Phys. Rev. B 34, 7587 (1986)CrossRefADSGoogle Scholar
  24. 24.
    Nishino, T., Hatano, M., Kawabe, U.: Electron tunneling study of superconducting proximity effect in silicon backed with Pb alloy. Jap. J. Appl. Phys. 26(3), 1543 (1987)CrossRefADSGoogle Scholar
  25. 25.
    Hatano, M., Nishino, T., Kawabe, U.: Experiments of the superconducting proximity effect between superconductor and semiconductor. Appl. Phys. Lett. 50, 52 (1987)CrossRefADSGoogle Scholar
  26. 26.
    Takayanagi, H., Akazaki, T., Nitta, J.: Observation of maximum supercurrent quantization in a superconducting quantum point contact. Phys. Rev. Lett. 75, 3533 (1995)CrossRefADSGoogle Scholar
  27. 27.
    Takayanagi, H., Hansen, J.B., Nitta, J.: Mesoscopic fluctuations of the critical current in a superconductor–normal-conductor–superconductor . Phys. Rev. Lett. 74, 166 (1995)CrossRefADSGoogle Scholar
  28. 28.
    Klapwijk, T.M.: Mesoscopic superconductor-semiconductor heterostructures . Physica B 197, 481 (1994)CrossRefADSGoogle Scholar
  29. 29.
    Heida, J.P., Van Wees, B.J., Klapwijk, T.M., Borghs, G.: Nonlocal supercurrent in mesoscopic Josephson junctions. Phys. Rev. B 57, 5618 (1998)CrossRefADSGoogle Scholar
  30. 30.
    Kleinsasser, A.W., Kastalsky, A.: Excess voltage and resistance in superconductor-semiconductor junctions. Phys. Rev. B 47, 8361 (1993)CrossRefADSGoogle Scholar
  31. 31.
    Kastalsky, A., Kleinsasser, A.W., Greene, L.H., Bhat, R., Milliken, F.P., Harbison, J.P.: Observation of pair currents in superconductor-semiconductor contacts. Phys. Rev. Lett. 67, 3026 (1991)CrossRefADSGoogle Scholar
  32. 32.
    Kleinsasser, A.W., Jackson, T.N.: Critical currents of superconducting metal-oxide-semiconductor field-effect transistors. Phys. Rev. B 42, 8716 (1990)CrossRefADSGoogle Scholar
  33. 33.
    Kleinsasser, A.W., Jackson, T.N., McInturff, D., Rammo, F., Pettit, G.D., Woodall, J.M.: Superconducting InGaAs junction field-effect transistor with Nb electrodes. Appl. Phys. Lett. 55, 1909 (1989)CrossRefADSGoogle Scholar
  34. 34.
    Morpurgo, A.F., van Wees, B.J., Klapwijk, T.M., Borghs, G.: Energy spectroscopy of Andreev levels between two superconductors. Phys. Rev. Lett. 79, 4010 (1997)CrossRefADSGoogle Scholar
  35. 35.
    van Wees, B.J., de Vries, P., Magne, P., Klapwijk, T.M.: Excess conductance of superconductor-semiconductor interfaces due to phase conjugation between electrons and holes. Phys. Rev. Lett. 69, 510 (1992)CrossRefADSGoogle Scholar
  36. 36.
    Frielinghaus, R., Batov, I.E., Weides, M., Kohlstedt, H., Calarco, R., Schapers, T.: Josephson supercurrent in Nb/InN-nanowire/Nb junctions. Appl. Phys. Lett. 96, 132504 (2010)CrossRefADSGoogle Scholar
  37. 37.
    Spathis, P., Biswas, S., Roddaro, S., Sorba, L., Giazotto, F., Beltram, F.: Hybrid InAs nanowire-vanadium proximity SQUID. Nanotechnology 22, 105201 (2011)CrossRefADSGoogle Scholar
  38. 38.
    Paajaste, J., Amado, M., Roddaro, S., Bergeret, F.S., Ercolani, D., Sorba, L., Giazotto, F.: Pb/InAs Nanowire Josephson junction with high critical current and magnetic flux focusing. Nano Lett. 15(3), 1803–1808 (2015)CrossRefADSGoogle Scholar
  39. 39.
    Nishio, T., Kozakai, T., Amaha, S., Larsson, M., Nilsson, H.A., Xu, H.Q., Zhang, G., Tateno, K., Takayanagi, H., Ishibashi, K.: Supercurrent through InAs nanowires with highly transparent superconducting contacts. Nanotechnology 22, 445701 (2011)CrossRefADSGoogle Scholar
  40. 40.
    Fu, L., Kane, C.L., Mele, E.J.: Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008)CrossRefADSGoogle Scholar
  41. 41.
    Fu, L., Kane, C.L.: Josephson current and noise at a superconductor/quantum-spin-Hall-insulator/superconductor junction. Phys. Rev. B 79, 161408 (2009)CrossRefADSGoogle Scholar
  42. 42.
    Tanaka, Y., Yokoyama, T., Nagaosa, N.: Manipulation of the Majorana fermion, Andreev reflection, and Josephson current on topological insulators. Phys. Rev. Lett. 103, 107002 (2009)CrossRefADSGoogle Scholar
  43. 43.
    Lutchyn, R.M., Sau, J.D., Das Sarma, S.: Majorana Fermions and a topological phase transition in semiconductor-superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010)CrossRefADSGoogle Scholar
  44. 44.
    Akhmerov, A.R., Nilsson, J., Beenakker, C.W.J.: Electrically detected interferometry of Majorana fermions in a topological insulator. Phys. Rev. Lett. 102, 216404 (2009)CrossRefADSGoogle Scholar
  45. 45.
    San-Jose, P., Prada, E., Aguado, R.: ac Josephson effect in finite-length nanowire junctions with Majorana modes. Phys. Rev. Lett. 108, 257001 (2012)CrossRefADSGoogle Scholar
  46. 46.
    Rokhinson, L.P., Liu, X., Furdyna, J.K.: The fractional ac Josephson effect in a semiconductor-superconductor nanowire as a signature of Majorana particles. Nat. Phys. 8, 795 (2012)CrossRefGoogle Scholar
  47. 47.
    Das, A., Ronen, Y., Most, Y., Oreg, Y., Heiblum, M., Shtrikman, H.: Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys. 8, 887 (2012)CrossRefGoogle Scholar
  48. 48.
    Mourik, V., Zuo, K., Frolov, S., Plissard, S., Bakkers, E., Kouwenhoven, L.: Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003 (2012)CrossRefADSGoogle Scholar
  49. 49.
    Lucignano, P., Mezzacapo, A., Tafuri, F., Tagliacozzo, A.: Advantages of using YBCO-nanowire-YBCO heterostructures in the search for Majorana fermions. Phys. Rev. B 86, 144513 (2012)CrossRefADSGoogle Scholar
  50. 50.
    Lucignano, P., Tafuri, F., Tagliacozzo, A.: Topological rf SQUID with a frustrating π junction for probing the Majorana bound state. Phys. Rev. B 88, 184512 (2013)CrossRefADSGoogle Scholar
  51. 51.
    Takei, S., Fregoso, B.M., Galitski, V., Das Sarma, S.: Topological superconductivity and Majorana fermions in hybrid structures involving cuprate high-Tc superconductors. Phys. Rev. B 87, 014504 (2013)CrossRefADSGoogle Scholar
  52. 52.
    Campagnano, G., Lucignano, P., Giuliano, D., Tagliacozzo, A.: Spin-orbit coupling and anomalous Josephson effect in nanowires. J. Phys. Condens. Matter 27, 205301 (2015)CrossRefADSGoogle Scholar
  53. 53.
    Yamakage, A., Sato, M., Kashiwaya, S., Tanaka, Y.: Anomalous Josephson current in superconducting topological insulator. Phys. Rev. B 87, 100510 (2013)CrossRefADSGoogle Scholar
  54. 54.
    Yokoyama, T., Eto, M., Nazarov, Y.V.: Anomalous Josephson effect induced by spin-orbit interaction and Zeeman effect in semiconductor nanowires. Phys. Rev. B 89, 195407 (2014)CrossRefADSGoogle Scholar
  55. 55.
    Papari, G., Carillo, F., Stornaiuolo, D., Longobardi, L., Beltram, F., Tafuri, F.: High critical-current density and scaling of phase-slip processes in YBaCuO nanowires. Supercond. Sci. Technol. 25, 035011 (2012)CrossRefADSGoogle Scholar
  56. 56.
    Papari, G., Carillo, F., Born, D., Bartoloni, L., Gambale, E., Stornaiuolo, D., Pingue, P., Beltram, F., Tafuri, F.: YBCO nanobridges: simplified fabrication process by using a Ti hard mask. IEEE Trans. Appl. Supercond. 19, 183 (2009)CrossRefADSGoogle Scholar
  57. 57.
    Papari, G., Carillo, F., Stornaiuolo, D., Massarotti, D., Longobardi, L., Beltram, F., Tafuri, F.: Dynamics of vortex matter in YBCO sub-micron bridges. Physica C 506, 188 (2014)CrossRefADSGoogle Scholar
  58. 58.
    Baghdadi, R., Arpaia, R., Charpentier, S., Golubev, D., Bauch, T., Lombardi, F.: Fabricating Nanogaps in Y B a 2 C u 3 O 7−δ for hybrid proximity-based Josephson junctions. Phys. Rev. Appl. 4, 014022 (2015)CrossRefADSGoogle Scholar
  59. 59.
    Stornaiuolo, D., Rotoli, G., Cedergren, K., Born, D., Bauch, T., Lombardi, F., Tafuri, F.: Submicron YBaCuO biepitaxial Josephson junctions: d-wave effects and phase dynamics. J. Appl. Phys. 107, 11390 (2010)CrossRefGoogle Scholar
  60. 60.
    Stornaiuolo, D., Rotoli, G., Massarotti, D., Carillo, F., Longobardi, L., Beltram, F., Tafuri, F.: Resolving the effects of frequency-dependent damping and quantum phase diffusion in YBa 2Cu 3O 7-x Josephson junctions. Phys. Rev. B 87, 134517 (2013)CrossRefADSGoogle Scholar
  61. 61.
    Lucignano, P., Stornaiuolo, D., Tafuri, F., Altshuler, B.L., Tagliacozzo, A.: Evidence of Minigap in YBCO grain boundary Josephson junctions. Phys. Rev. Lett. 105, 147001 (2010)CrossRefADSGoogle Scholar
  62. 62.
    Gustafsson, D., Pettersson, H., Iandolo, B., Olsson, E., Bauch, T., Lombardi, F.: Soft nanostructuring of YBCO Josephson junctions by phase separation. Nano Lett. 10, 4824 (2010)CrossRefADSGoogle Scholar
  63. 63.
    Nagel, J., Konovalenko, K.B., Kemmler, M., Turad, M., Werner, R., Kleisz, E., Menzel, S., Klingeler, R., Buchner, B., Kleiner, R., Koelle, D.: Resistively shunted YBCO grain boundary junctions and low-noise SQUIDs patterned by a focused ion beam down to 80 nm linewidth. Supercond. Sci. Technol. 24, 015015 (2011)CrossRefADSGoogle Scholar
  64. 64.
    Arpaia, R., Ejrnaes, M., Parlato, L., Cristiano, R., Arzeo, M., Bauch, T., Nawaz, S., Tafuri, F., Pepe, G.P., Lombardi, F: Highly homogeneous YBCO/LSMO nanowires for photoresponse experiments. Supercond Sci. Technol. 27, 044027 (2014)CrossRefADSGoogle Scholar
  65. 65.
    Sochnikov, I., Shaulov, A., Yeshurun, Y., Logvenov, G., Bozovic, I.: Large oscillations of the magnetoresistance in nanopatterned high-temperature superconducting films. Nat. Nanotechnol. 5, 516 (2010)CrossRefADSGoogle Scholar
  66. 66.
    Litombe, N.E., Bollinger, A.T., Hoffman, J.E., Bozovic, I.: La 2−xSr xCuO 4 superconductor nanowire devices. Physica C 506, 1869 (2014)CrossRefGoogle Scholar
  67. 67.
    Nawaz, S., Arpaia, R., Bauch, T., Lombardi, F.: Approaching the theoretical depairing current in YBa2Cu3O 7−x nanowires. Physica C 495, 33 (2013)CrossRefADSGoogle Scholar
  68. 68.
    Arpaia, R., Nawaz, S., Lombardi, F., Bauch, T.: Improved nanopatterning for YBCO nanowires approaching the depairing current. IEEE Trans. Appl. Supercond. 23, 1101505 (2013)CrossRefGoogle Scholar
  69. 69.
    Nawaz, S., Arpaia, R., Lombardi, F., Bauch, T.: Microwave response of superconducting YBa2Cu3O 2−x nanowire bridges sustaining the critical depairing current: evidence of Josephson-like behavior. Phys. Rev. Lett. 110, 167004 (2013)CrossRefADSGoogle Scholar
  70. 70.
    Larsson, P., Nilsson, B., Ivanov, Z.G.: Fabrication and transport measurements of YBaCuO nanostructures. J. Vac. Sci. Technol. 18, 25 (2000)CrossRefGoogle Scholar
  71. 71.
    Schneider, J., Kohlstedt, H., Wordenweber, R.: Nanobridges of optimized Y B a 2 C u 3 O 7 thin films for superconducting flux-flow type devices. Appl. Phys. Lett. 63, 2426 (1993)CrossRefADSGoogle Scholar
  72. 72.
    Assink, H.P., Harg, A.J.M.V.D., Schep, L.C.M., Chen, N.Y., Marel, D.V.D., Hadley, P., Drift, E.W.J.M.V.D., Mooij, J.E.: Critical currents in submicron Y B a 2 C u 3 O 7 lines. IEEE Trans. Appl. Supercond. 3, 2983 (1993)CrossRefGoogle Scholar
  73. 73.
    Xu, K., Heath, J.R.: Long, highly-ordered high-temperature superconductor nanowire arrays. Nano Lett. 8, 3845 (2008)CrossRefADSGoogle Scholar
  74. 74.
    Mohanty, P., Wei, J.Y.T., Ananth, V., Morales, P., Skocpol, W.: Nanoscale high-temperature superconductivity. Physica C 666, 408 (2004)Google Scholar
  75. 75.
    Jiang, H., Huang, Y., How, H., Zhang, S., Vittoria, C., Widom, A., Chrisey, D.B., Horwitz, J.S., Lee, R.: Phys. Rev. Lett. 66, 1785 (1991)CrossRefADSGoogle Scholar
  76. 76.
    Bonetti, J.A., Caplan, D.S., Van Harlingen, D.J., Weissman, M.B.: Electronic transport in underdoped Y B a 2 C u 3 O 7−δ nanowires: evidence for fluctuating domain structures. Phy. Rev. Lett. 93, 087002 (2004)CrossRefADSGoogle Scholar
  77. 77.
    Mikheenko, P., Deng, X., Gildert, S., Colclough, M. S., Smith, R.A., Muirhead, C.M., Prewett, P.D., Teng, J.: Phase slips in submicrometer YBaCuO bridges. Phys. Rev. B 72, 174506 (2005)CrossRefADSGoogle Scholar
  78. 78.
    Vitiello, M., Coquillat, D., Viti, L., Ercolani, D., Teppe, F., Pi-tanti, A., Beltram, F., Sorba, L., Knap, W., Tredicucci, A.: Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors. Nano Lett. 12, 96 (2012)CrossRefADSGoogle Scholar
  79. 79.
    Viti, L., Vitiello, M.S., Ercolani, D., Sorba, L., Tredicucci, A.: Se-doping dependence of the transport properties in CBE-grown InAs nanowire field effect transistors. Nanoscale Res. Lett. 7, 159 (2012)CrossRefADSGoogle Scholar
  80. 80.
    Ercolani, D., Rossi, F., Li, A., Roddaro, S., Grillo, V., Salviati, G., Beltram, F., Sorba, L.: InAs/InSb nanowire heterostructures grown by chemical beam epitaxy. Nanotechnology 20, 505605 (2009)CrossRefGoogle Scholar
  81. 81.
    Maijenburg, A., Maas, M., Rodijk, E., Ahmed, W., Kooij, E., Carlen, E., Blank, D., Elshof, J.: Dielectrophoretic alignment of metal and metal oxide nanowires and nanotubes: a universal set of parameters for bridging prepatterned microelectrodes, vol. 355, pp 486–493 (2011)Google Scholar
  82. 82.
    Smith, P.A., Nordquist, C.D., Jackson, T.N., Mayer, T.S., Martin, B.R., Mbindyo, J., Mallouk, T.E.: Electric-field assisted assembly and alignment of metallic nanowires, vol. 77, p 1399 (2000)Google Scholar
  83. 83.
    Hesketh, P.J., Gallivan, M.A., Kumar, S., Erdy, C.J., W. Z. L.: The application of dielectrophoresis to nanowire sorting and assmbly for sensors. In: Proceeding of the 13th Mediterrranean Conference on Control and Automation (2005)Google Scholar
  84. 84.
    Thelandera, C., Bjorka, M.T., Larssonb, M.W., Hansena, A.E., Wallenbergb, L.R., Samuelson, L.: Electron transport in InAs nanowires and heterostructure nanowire devices. Solid State Commun. 131, 573 (2004)CrossRefADSGoogle Scholar
  85. 85.
    Suyatin, D.B., Thelander, C., Bjork, M.T., Maximov, I., Samuelson, L.: Sulfur passivation for ohmic contact formation to InAs nanowires. Nanotechnology 18, 105307 (2007)CrossRefADSGoogle Scholar
  86. 86.
    Bessolov, V.N., Lebedev, M.V.: Chalcogenide passivation of III-V semiconductor surfaces. Fiz. Tekh. Poluprovodn. 32, 1281 (1998)Google Scholar
  87. 87.
    Longobardi, L., Massarotti, D., Rotoli, G., Stornaiuolo, D., Papari, G., Kawakami, A., Pepe, G.P., Barone, A., Tafuri, F.: Thermal hopping and retrapping of a Brownian particle in the tilted periodic potential of a NbN/MgO/NbN Josephson junction. Phys. Rev. B 84, 184504 (2011)CrossRefADSGoogle Scholar
  88. 88.
    Massarotti, D., Stornaiuolo, D., Lucignano, P., Galletti, L., Born, D., Rotoli, G., Lombardi, F., Longobardi, L., Tagliacozzo, A., Tafuri, F.: Breakdown of the escape dynamics in Josephson junctions. Phys. Rev. B 92, 054501 (2015)CrossRefADSGoogle Scholar
  89. 89.
    Massarotti, D., Pal, A., Rotoli, G., Longobardi, L., Blamire, M., Tafuri, F.: Macroscopic quantum tunnelling in spin filter ferromagnetic Josephson junctions. Nat. Comm. 6, 7376 (2015)CrossRefADSGoogle Scholar
  90. 90.
    Jiang, X., Xiong, Q., Nam, S., Qian, F., Li, Y., Lieber, C.M.: InAs/InP radial nanowire heterostructures as high electron mobility devices. Nano Lett. 7, 3214 (2007)CrossRefADSGoogle Scholar
  91. 91.
    Thelander, C., Caroff, P., Plissard, S., Dey, A.W., Dick, K.A.: Effects of crystal phase mixing on the electrical properties of InAs nanowires. Nano Lett. 11, 2424 (2011)CrossRefADSGoogle Scholar
  92. 92.
    Abrahams, E., Anderson, P.W., Licciardello, D., Ramakrishnan, T.: Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42, 673 (1979)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Domenico Montemurro
    • 1
    • 3
  • Davide Massarotti
    • 2
  • Procolo Lucignano
    • 2
  • Stefano Roddaro
    • 3
  • Daniela Stornaiuolo
    • 2
  • Daniele Ercolani
    • 3
  • Lucia Sorba
    • 3
  • Arturo Tagliacozzo
    • 2
  • Fabio Beltram
    • 3
  • Francesco Tafuri
    • 1
    • 2
  1. 1.Dipartimento di Ingegneria Industriale e dell’InformazioneSeconda Università degli Studi di NapoliAversa (CE)Italy
  2. 2.CNR-SPIN & Dipartimento Fisica Università di Napoli Federico IIComplesso Universitario di Monte S. AngeloNapoliItaly
  3. 3.NESTIstituto Nanoscienze-CNR and Scuola Normale SuperiorePisaItaly

Personalised recommendations