Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 28, Issue 12, pp 3571–3577 | Cite as

Imprinted Magnetic Anisotropy and Zigzag Domain Structure of Amorphous TbCo Films

  • V. Ukleev
  • R. Moubah
  • D. Baranov
  • S. V. Gastev
  • B. Krichevtsov
  • E. Velichko
  • N. Kulesh
  • Yu. Chetverikov
  • S. V. Grigoriev
Original Paper

Abstract

We investigate the magnetic anisotropy and domain structure of amorphous Tb x Co(1−x) films grown in external in-plane magnetic field by high-frequency ion sputtering. Films with different thicknesses 100 and 500 nm and rare-earth element concentrations x = 12 % and x = 34 % present strong imprinted in-plane uniaxial anisotropy. Measurements of magnetic properties and domain structure imaging were performed by means of longitudinal and polar magneto-optical Kerr effect (MOKE). The coercivity fields increase by an order of magnitude for the higher Tb concentration and increase with film thickness (H c along the hard axis are 495, and 580 Oe, for 100 and 500 nm, with x = 34 % and 65, and 95 Oe for 100 and 500 nm with x = 12 %, respectively). Polar MOKE measurements revealed the existence of an out-of-plane magnetization component for the films with a Tb concentration of 34 % in lower fields. Large-scale domain structure of TbCo films with imprinted anisotropy was also studied as a function of applied field. Kerr imaging shows a zigzag domain structure of Tb12Co88 films, while no domains were found in Tb34Co66 samples. We also demonstrate that the zigzag angle depends on the film thickness. We suggest that domain structure in these films is determined by the interplay of imprinted and local magnetic anisotropies as well as exchange interaction.

Keywords

Hard magnetic materials Alloys and films Anisotropy Domains 

Notes

Acknowledgments

Authors thanks Swedish Institute for the financial support through the Uppsala University.

References

  1. 1.
    Connell, G.: J. Magn. Magn. Mater. 57 (1986). http://www.sciencedirect.com/science/article/pii/ 0304885386909273
  2. 2.
    Shieh, H.P.D. , Yamasaki, J., Kryder, M.: IEEE Trans. Magn. 5, 3208 (1987). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1065470 CrossRefADSGoogle Scholar
  3. 3.
    Sun, J.J., Sousa, R.C., Galvao, T.T.P., Soares, V., Plaskett, T.S., Freitas, P.P.: J. Appl. Phys. 83(11), 6694–6696 (1998). http://scitation.aip.org/content/aip/journal/jap/83/11/10.1063/1.367719 CrossRefADSGoogle Scholar
  4. 4.
    Sousa, R.C., Sun, J.J., Soares, V., Freitas, P.P., Kling, A., da Silva, M.F., Soares, J.C.: J. Appl. Phys. 85(8), 5258–5260 (1999). http://scitation.aip.org/content/aip/journal/jap/85/8/10.1063/1.369959 CrossRefADSGoogle Scholar
  5. 5.
    Moodera, J.S., Mathon, G.: J. Magn. Magn. Mater. 200(1?3), 248 (1999). doi: 10.1016/S0304-8853(99)00515-6. http://www.sciencedirect.com/science/article/pii/S0304885399005156 CrossRefADSGoogle Scholar
  6. 6.
    Givord, D., Lienard, A., Rebouillat, J., Schweizer, J.: Phys. B+C 130(1?3), 351 (1985). doi: 10.1016/0378-4363(85)90255-4. http://www.sciencedirect.com/science/article/pii/0378436385902554 CrossRefADSGoogle Scholar
  7. 7.
    Niihara, T., Takayama, S., Kaneko, K., Sugita, Y.: Appl. Phys. Lett. 45(8), 872 (1984). doi: 10.1063/1.95438 CrossRefADSGoogle Scholar
  8. 8.
    Ohkoshi, M., Harada, M., Tokunaga, T., Honda, S., Kusuda, T.: IEEE Trans. Magn. 21(5), 1635 (1985). doi: 10.1109/TMAG.1985.1064134 CrossRefADSGoogle Scholar
  9. 9.
    Chen, X., Wang, Y.J., Liang, B.Q., Tang, Y.J., Zhao, H.W., Xiao, J.Q.: J. Appl. Phys. 87(9), 6845 (2000). doi: 10.1063/1.372861. http://scitation.aip.org/content/aip/journal/jap/87/9/10.1063/ 1.372861 CrossRefADSGoogle Scholar
  10. 10.
    Cheng, S.N, Kryder, M., Mathur, M.C.A.: IEEE Trans. Magn. 25(5), 4018 (1989). doi: 10.1109/20.42509 CrossRefADSGoogle Scholar
  11. 11.
  12. 12.
    Kim, T., Lee, H.Y., Lee, K., Hwang, J.Y.: J. Vac. Sci. Technol. B: Microelectron. Struct. 28(1), 110 (2010). doi: 10.1116/1.3275959 MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Lin, G., Chen, S., Kuo, P., Lin, P., Huang, K., Fang, Y.: J. Magn. Magn. Mater. 320(22), 3117 (2008). doi: 10.1016/j.jmmm.2008.08.031. Eighth Perpendicular Magnetic Recording Conference. http://www.sciencedirect.com/science/article/pii/S0304885308008779 CrossRefADSGoogle Scholar
  14. 14.
    Lin, M.S., Hou, H.C., Wu, Y.C., Huang, P.H., Lai, C.H., Lin, H.H., Lin, H.J., Chang, F.H.: Phys. Rev. B 79, 140412 (2009). doi: 10.1103/PhysRevB.79.140412 http://link.aps.org/doi/10.1103/PhysRevB.79.140412 CrossRefADSGoogle Scholar
  15. 15.
    Soltani, M., Chakri, N., Lahoubi, M.: J. Alloys Compd. 324, 422 (2001). http://www.sciencedirect. com/science/article/pii/S0925838801011021 CrossRefGoogle Scholar
  16. 16.
    Suzuki, Y.: J. Appl. Phys. 73 (9), 4507 (1993). doi: 10.1063/1.352792 CrossRefADSGoogle Scholar
  17. 17.
    Vaskovskiy, V., Svalov, A., Balymov, K., Kulesh, N.: Phys. Met. Metallogr. 113(9), 862 (2012). doi:doi: 10.1134/S0031918X1209013X.  10.1134/S0031918X1209013X CrossRefADSGoogle Scholar
  18. 18.
    Zhi-Xin, H., Zuo-Yi, L., Fang, J., Xiao-Min, C., Xiao-Hong, X., Zhen, L., Xian-Ran, W., Geng-Qi, L.: Chin. Phys. Lett. 1531 (2002) http://iopscience.iop.org/0256-307X/19/10/340
  19. 19.
    Nikitin, S., Andreenko, A., Damianova, R.: IEEE Trans. Magn. 24(2), 1987 (1988). doi: 10.1109/20.11668. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=11668 CrossRefADSGoogle Scholar
  20. 20.
    Andreenko, A.S., Nikitin, S.A.: Phys. Usp. 40(6), 581 (1997). http://stacks.iop.org/1063-7869/40/i=6/ a=R02 CrossRefADSGoogle Scholar
  21. 21.
    Vaskovskiy, V.R., Balymov, K.G., Svalov, A.V., Kulesh, N.A., Stepanova, E.A., Sorokin, A.N.: Phys. Solid State 53(11), 2275 (2011). doi: 10.1134/S1063783411110321. http://link.springer.com/10.1134/S1063783411110321 CrossRefADSGoogle Scholar
  22. 22.
    Andreenko, A.S: Phys. Solid State 35(9) (1993)Google Scholar
  23. 23.
  24. 24.
    Grechishkin, R., Chigirinsky, S., Gusev, M.: Magnetic Nanostructures in Modern Technology. 195–224 (2008) http://link.springer.com/chapter/10.1007/978-1-4020-6338-1_11
  25. 25.
    Moubah, R., Magnus, F., Östman, E., Muhammad, Y., Arnalds, U.B., Ahlberg, M., Hjörvarsson, B., Andersson, G.: Journal of physics. Condensed matter : an Institute of Physics journal 25(41), 416004 (2013). doi: 10.1088/0953-8984/25/41/416004. http://iopscience.iop.org/0953-8984/25/41/416004/ CrossRefGoogle Scholar
  26. 26.
    Favieres, C., Vergara, J., Madurga, V.: Journal of physics. Condensed matter : an Institute of Physics journal 25(6), 066002 (2013). doi: 10.1088/0953-8984/25/6/066002 CrossRefADSGoogle Scholar
  27. 27.
  28. 28.
    Zvezdin, A. K., Kotov, V.A.: Modern Magnetooptics and Magnetooptical Materials. IOP, Bristol, pp 1–386 (1997)Google Scholar
  29. 29.
    Zhao, Y.P., Gamache, R.M., Wang, G.C., Lu, T.M., Palasantzas, G., De Hosson, J.T.M.: J. Appl. Phys. 89(2), 1325–1330 (2001). http://scitation.aip.org/content/aip/journal/jap/89/2/10.1063/1.1331065 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • V. Ukleev
    • 1
  • R. Moubah
    • 2
    • 3
  • D. Baranov
    • 4
    • 5
  • S. V. Gastev
    • 4
  • B. Krichevtsov
    • 4
  • E. Velichko
    • 1
  • N. Kulesh
    • 6
  • Yu. Chetverikov
    • 1
  • S. V. Grigoriev
    • 1
    • 7
  1. 1.National Research Centre Kurchatov Institute B. P. Konstantinov Petersburg Nuclear Physics InstituteGatchinaRussia
  2. 2.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  3. 3.LPMMATUniversité Hassan II - Casablanca, Facult des SciencesMaarifMorocco
  4. 4.Ioffe Physical-Technical InstitutePolitekhnicheskayaSt. PetersburgRussia
  5. 5.National Research University for Information TechnologyMechanics and Optics (ITMO)St. PetersburgRussia
  6. 6.The Ural Federal UniversityEkaterinburgRussia
  7. 7.Saint-Petersburg State UniversitySaint-PetersburgRussia

Personalised recommendations