Journal of Superconductivity and Novel Magnetism

, Volume 28, Issue 11, pp 3317–3322 | Cite as

Hydrothermally Synthesized CdS Nanoparticles: Effect of Fe Doping on Optical and Magnetic Properties

Original Paper

Abstract

Fe-doped CdS nanoparticles (Cd 1−x Fe x S) (x = 0.0, 0.03, 0.05, 0.10) were synthesized using hydrothermal technique. X-ray diffraction (XRD) confirmed hexagonal structure of the nanoparticles with sizes 39.9, 22.8, 13.3, and 11.4 nm, respectively, for undoped 3 %, 5 % and 10 % Fedoped CdS nanoparticles. No extra peaks were found in energy-dispersive spectroscopy (EDS) showing absence of any impurity. Transmission electron microscopy (TEM) confirmed uniform spherical morphology of synthesized nanoparticles. The UV–visible absorption spectra confirmed a blue shift in the case of Fe-doped CdS nanoparticles. Photoluminescence (PL) technique revealed the occurrence of green emission in the CdS nanoparticles. A vibrating sample magnetometer (VSM) provided the hysteresis curves with magnetic saturation values of 0.015, 0.027, 0.048, and 0.071 emu/g for undoped, 3 %, 5 %, and 10 % Fe-doped CdS nanoparticles, respectively.

Keywords

Dilute magnetic semiconductors CdS Nanoparticles Photoluminescence Ferromagnetism 

Notes

Acknowledgments

Kamaldeep Kaur gratefully acknowledges UGC, Government of India, for awarding her Maulana Azad National Fellowship to carry out this research work.

References

  1. 1.
    Fert, A.: Rev. Mod. Phys. 80, 1517 (2008)CrossRefADSGoogle Scholar
  2. 2.
    Awschalom, D.D., Flatté, M.E.: Nat. Phys. 3, 153 (2007)CrossRefGoogle Scholar
  3. 3.
    Dietl, D., Ohno, H., Matsukura, F., Cibert, J., Ferrand, F.: Science 287, 1019 (2000)CrossRefADSGoogle Scholar
  4. 4.
    Ohno, H.: Science 14, 951 (1998)MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    Chawla, A.K., Singhal, S., Nagar, S., Gupta, H.O., Chandra, R.: J. Appl. Phys. 108, 123519 (2010)CrossRefADSGoogle Scholar
  6. 6.
    Salimian, S., Farjami Shayesteh, S., Supercond, J.: Nov. Magn. 25, 2009 (2012)CrossRefGoogle Scholar
  7. 7.
    Murai, H., Abe, T., Matsuda, J., Sato, H., Chiba, S., Kashiwaba, Y.: Appl. Surf. Sci. 244, 351 (2005)CrossRefADSGoogle Scholar
  8. 8.
    Wang, Y., Ramanathan, S., Fan, Q., Yan, F., Morkoe, H., Bandyopadhyay, R.S.: J. Nanosci. Nanotechnol. 6, 2077 (2006)CrossRefGoogle Scholar
  9. 9.
    Ma, R.M., Dai, L., Qin, G.G.: Nano. Lett. 7, 868 (2007)CrossRefADSGoogle Scholar
  10. 10.
    Duan, X., Huang, Y., Agrawal, R., Lieber, C.M.: Nature 421, 241 (2003)CrossRefADSGoogle Scholar
  11. 11.
    Nelson, J.: The physics of solar cells. U.K: Imperial College Press (2003)Google Scholar
  12. 12.
    Rai, S., Bokatial, L.: Bull. Mater. Sci. 34, 227 (2011)CrossRefGoogle Scholar
  13. 13.
    Jindal, Z., Verma, N.K.: Mater. Sci. Appl. 1, 210 (2010)Google Scholar
  14. 14.
    Wu, W., Ye, H., Ruan, X.: Nanotechnology 21, 265704 (2010)CrossRefADSGoogle Scholar
  15. 15.
    Rathore, K.S., Deepika, D., Patidar, N.S., Saxena, K.B., Sharma, J.: Ovonic. Res. 5, 175 (2009)Google Scholar
  16. 16.
    Singh, D., Ahmad, M.M.: Appl. Nanosci. 3, 13 (2013)CrossRefADSGoogle Scholar
  17. 17.
    Thambidurai, M., Muthukumarasamy, N., Velauthapillai, D., Lee, C., Mater, J.: Sci.: Mater. Electron. 24, 4535 (2013)Google Scholar
  18. 18.
    Kumar, K.S., Divya, A., Reddy, P.S.: Appl. Surf. Sci. 257, 9515 (2011)CrossRefADSGoogle Scholar
  19. 19.
    Murali, G., Reddy, D.A., Prakash, B.P., Vijayalakshmi, R.P., Reddy, B.K., Venugopal, R.: Phys. B 407, 2084 (2012)CrossRefADSGoogle Scholar
  20. 20.
    Tripathia, B., Singh, F., Avasthi, D.K., Bhatic, A.K., Dasd, D., Vijaya, Y.K.: J. Alloys Compd 454, 97 (2008)CrossRefGoogle Scholar
  21. 21.
    Thambiduraia, M., Muthukumarasamya, N., Agilana, S., Muruganb, N., Arulc, N. S., Vasanthaa, S., Balasundaraprabhu, R.: Solid State Sci. 12, 1554 (2010)CrossRefADSGoogle Scholar
  22. 22.
    Sekhar, H., Rao, D.N.: J. Alloys Compd. 517, 103 (2012)CrossRefGoogle Scholar
  23. 23.
    Kumara, A.A., kumara, A., Quamaraa, J.K., Priya, S.: Chalcogenide Lett. 11, 381 (2014)Google Scholar
  24. 24.
    Kaur, K., Lotey, G.S., Verma, N.K., Mater, J.: Sci: Mater. Electron. 25, 2605 (2014)Google Scholar
  25. 25.
    Cullity, B.D., Stock, S.R.: Elementary of X-ray Diffraction, 3rd edn. Prentice-Hall, Englewood Cliffs (2001)Google Scholar
  26. 26.
    Singh, J., Verma, N.K., Supercond, J.: Nov. Magn. 25, 2425 (2012)CrossRefGoogle Scholar
  27. 27.
    Kumar, S., Jindal, Z., Kumari, N., Verma, N.K.: J. Nanopart. Res. 13, 5465 (2011)CrossRefGoogle Scholar
  28. 28.
    Singh, V., Chauhan, P., Phys, J.: Chem. Solids 70, 1074 (2009)CrossRefADSGoogle Scholar
  29. 29.
    Kaur, K., Lotey, G.S., Verma, N.K., Mater, J.: Sci: Mater. Electron. 25, 311 (2014)Google Scholar
  30. 30.
    Berger, L.I., Semiconductor Materials, C.R.C.: Press, Boca Raton. FL (1997)Google Scholar
  31. 31.
    Malik, M.A., Brien, P.O, Revaprasadu, N.: J. Mater. Chem. 11, 2382 (2001)Google Scholar
  32. 32.
    Kotkata, M.F., Masoud, A.E., Mohamed, M.B, Mahmoud, E.A.: PhysicaE 41, 1457 (2009)CrossRefADSGoogle Scholar
  33. 33.
    Sharma, P.K., Dutta, R.K., Pandey, A.C., Layek, S., Verma, H.C.: J. Magn. Magn. Mater. 321, 2587 (2009)CrossRefADSGoogle Scholar
  34. 34.
    Madhu, C., Sundaresan, A., Rao, C.N.R.: Phys. Rev. B 77, 201306 (2008)CrossRefADSGoogle Scholar
  35. 35.
    Singh, R.: J. Magn. Magn. Mater. 346, 58 (2013)CrossRefADSGoogle Scholar
  36. 36.
    Sambasivama, S., Joseph, D.P., Reddya, D.R., Reddya, B.K., Jayasankara, C.K.: Mater. Sci. Eng. B 150, 125 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Nano Research Lab, School of Physics and Materials ScienceThapar UniversityPatialaIndia

Personalised recommendations