Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 28, Issue 10, pp 3135–3139 | Cite as

Magnetocaloric Properties in La0.5Ca0.45K0.05MnO3, Pr0.5Sr0.45K0.05MnO3, and Nd0.5Sr0.45K0.05MnO3 Manganites

  • A. Mehri
  • W. Cheikhrouhou-KoubaaEmail author
  • M. Koubaa
  • A. Cheikhrouhou
Original Paper

Abstract

In this paper, we report the result of the influence of 5 % K doping upon the magnetic and magnetocaloric properties of La0.5Ca0.45K0.05MnO3, Pr0.5Sr0.45 K0.05MnO3, and Nd0.5Sr0.45K0.05MnO3 perovskite manganites. Our samples have been synthesized by the conventional solid-state reaction at high temperature. X-ray diffraction analysis using the Rietveld refinement show that all our synthesized samples are single phase and crystallize in the orthorhombic structure with Pbnm space group for all the compounds. Magnetization measurements versus temperature in a magnetic applied field of 50 mT indicate that all our investigated samples display a paramagnetic–ferromagnetic transition with decreasing temperature. The Curie temperatures are found to be 295.2, 296.4, and 314 K for La0.5Ca0.45K0.05MnO3 (LCKM), Nd0.5Sr0.45K0.05MnO3 (NSKM), and Pr0.5Sr0.45K0.05MnO3 (PSKM), respectively. From the measured magnetization data as a function of magnetic applied field, we have deduced the associated magnetic entropy change, which reaches a maximum \(\left | {\Delta S}_{\mathrm {M}}^{\text {Max}} \right |\) value of 1.5 1.57 and 1.6 J/kg K for LCKM, PSKM and NSKM respectively under a magnetic applied field of 4 T.

Keywords

Manganites Magnetocaloric effect Magnetic properties 

Notes

Acknowledgments

This work has been supported by the Tunisian Ministry of High Education and Scientific Research.

References

  1. 1.
    Regaieg, Y., Sicard, L., Monnier, J., Koubaa, M., Ammar-Merah, S., Cheikhrouhou, A.: J. Appl. Phys. 115, 17A917 (2014)CrossRefGoogle Scholar
  2. 2.
    Gschneidner K.A. Jr., Pecharsky, V.K., Tsokol, A.O.: Rep. Prog. Phys. 68, 1479–1539 (2005)CrossRefADSGoogle Scholar
  3. 3.
    Rebello, A., Naik, V.B., Mahendiran, R.: J. Appl. Phys. 110, 013906 (2011)CrossRefADSGoogle Scholar
  4. 4.
    Krichene, A., Boujelben, W., Cheikhrouhou, A.: J. Alloys Comp. 550, 75–82 (2013)CrossRefGoogle Scholar
  5. 5.
    Anwar, M.S., Kumar, S., Ahmed, F., Heo, S.N., Kim, G.W., Koo, B.H.: J. Electroceram. 30, 46–50 (2013)CrossRefGoogle Scholar
  6. 6.
    Kallel, S., Kallel, N., Hagaza, A., Pena, O., Oumezzine, M.: J. Alloys Comp. 492, 241–244 (2010)CrossRefGoogle Scholar
  7. 7.
    Ehsani, M.H., Kameli, P., Ghazi, M.E., Razavi, F.S., Taheri, M.: J. Appl. Phys. 114, 223907 (2013)CrossRefADSGoogle Scholar
  8. 8.
    Xu, Y., Memmert, U., Hartmann, U.: Sens. Actuators A 91, 26–29 (2001)CrossRefGoogle Scholar
  9. 9.
    Anwar, M.S., Ahmed, F., Lee, S.R., Danish, R., Koo, B.H.: Jpn. J. Appl. Phys. 52, 10MC12-1-5 (2013)CrossRefGoogle Scholar
  10. 10.
    Wang, Z., Huang, J.: J. Alloys Comp. 576, 54–58 (2013)CrossRefGoogle Scholar
  11. 11.
    Ehsani, M.H., Kameli, P., Razavi, F.S., Ghazi, M.E., Aslibeiki, B.: J. Alloys Comp. 579, 406–414 (2013)CrossRefGoogle Scholar
  12. 12.
    Phan, T.L., Thanh, T.D., Zhang, P., Yang, D.S., Yu, S.C.: Solid State Commun. 166, 32–37 (2013)CrossRefADSGoogle Scholar
  13. 13.
    Giri, S.K., Dasgupta, P., Poddar, A., Nigam, A.K., Nath, T.K.: J. Alloys Comp. 582, 609–616 (2014)CrossRefGoogle Scholar
  14. 14.
    Mahato, R.N., Sethupathi, K., Sankaranarayanan, V., Nirmala, R.: J. Appl. Phys. 107, 09A943 (2010)Google Scholar
  15. 15.
    Reshmi, C.P., Pillai, S.S., Suresh, K.G., Varma, M.R.: Solid State Sci. 19, 130–135 (2013)CrossRefADSGoogle Scholar
  16. 16.
    Phan, M.H., Yu, S.C., Magn, J.: Magn. Mater. 308, 325–340 (2007)CrossRefADSGoogle Scholar
  17. 17.
    Anwar, M.S., Kumar, S., Ahmed, F., Arshi, N., Koo, B.H.: Mater. Res. Bull 47, 2977–2979 (2012)CrossRefGoogle Scholar
  18. 18.
    Tegus, O., Bruck, E., Buschow, K.H.J., de Boer, F.R.: Nature 415, 150–152 (2002)CrossRefADSGoogle Scholar
  19. 19.
    Tishin, A.M., Spichkin, I.: The magnetocaloric effect and its applications. Institute of Physics Publishing, Bristol (2003)CrossRefGoogle Scholar
  20. 20.
    Pecharsky, V.K. Jr., Gschneidner, K.A.: J. Magn. Magn. Mater. 167, L179–L184 (1997)CrossRefADSGoogle Scholar
  21. 21.
    Pecharsky, V.K., Gschneidner, K.A. Jr.: Phys. Rev. Lett. 78, 4494–4497 (1997)CrossRefADSGoogle Scholar
  22. 22.
    Wada, H., Tanabe, Y.: Appl. Phys. Lett. 79, 3302–3304 (2001)CrossRefADSGoogle Scholar
  23. 23.
    Hu, F.X., Shen, B.G., Sun, J.R., Cheng, Z.H., Rao, G.H., Zhang, X.X.: Appl. Phys. Lett. 78, 3675–3677 (2001)CrossRefADSGoogle Scholar
  24. 24.
    Koubaa, M., Cheikhrouhou Koubaa, W., Cheikhrouhou, A.: J. Phys. Proc. 2, 997–1004 (2009)CrossRefGoogle Scholar
  25. 25.
    Rietveld, M.H.: J. Appl. Cryst. 2, 65 (1969)CrossRefGoogle Scholar
  26. 26.
    Wiles, D.B., Young, R.A.: J. Appl. Crystallogr. 14, 149 (1981)CrossRefGoogle Scholar
  27. 27.
    McMichael, R.D., Ritter, J.J., Shull, R.D.: J. Appl. Phys. 73, 6946 (1993)CrossRefADSGoogle Scholar
  28. 28.
    Regaieg, Y., Koubaa, M., Cheikhrouhou Koubaa, W., Cheikhrouhou, A., Mhiri, T.: J. Alloys Compd. 502, 270–274 (2010)CrossRefGoogle Scholar
  29. 29.
    Thljaoui, R., Boujelben, W., Pekala, M., Pekala, K., Fagnard, J.-F., Vanderbemden, P., Donten, M., Cheikhrouhou, A.: J. Magn. Magn. Mater. 352, 6–12 (2007)CrossRefADSGoogle Scholar
  30. 30.
    Jerbi, A. , Thljaoui, R., Krichen, A., Boujelben, W.: J. Phys. B 442, 21–28 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • A. Mehri
    • 1
  • W. Cheikhrouhou-Koubaa
    • 1
    • 2
    Email author
  • M. Koubaa
    • 1
  • A. Cheikhrouhou
    • 1
  1. 1.Laboratoire de Physique des Matériaux, Faculté des Sciences de SfaxSfax UniversitySfaxTunisia
  2. 2.Centre de recherche en InformatiqueMultimédia de SfaxSfaxTunisia

Personalised recommendations