Journal of Superconductivity and Novel Magnetism

, Volume 28, Issue 10, pp 3069–3074 | Cite as

Multiferroic Properties of Zn1−xMgxO Nanoparticles

Original Paper


In present research communication, the synthesis of Zn 1−xMg xO (x = 0.00, 0.05, 0.10, 0.15, and 0.20) nanoparticles has been carried out by sol–gel route. X-ray diffraction (XRD) patterns reveal the hexagonal structure of ZnO without the formation of any extra phase. Transmission electron microscopy (TEM) study indicates the spherical shape of nanoparticles, having an average particle size of 17 nm for undoped nanoparticles. The particle size has been found to be decreasing with the increase in Mg-doping concentration. High-resolution transmission electron microscopy (HRTEM) predicts the well crystalline nature of nanoparticles without any segregated extra phase or impurity, in agreement with energy dispersive spectroscopy (EDS). Electron spin resonance (ESR) analysis indicates the defects mediated long-range ferromagnetic interaction. Magnetization versus applied magnetic field (MH) curves registers a decrease in saturation magnetization value with increase of Mg-doping concentration which can be related to decrease of oxygen vacancies in host nanoparticles. The dielectric versus frequency response has been explained by Maxwell–Wagner interfacial model. Improved ferroelectric behavior has been observed with Mg-doping concentration.


Nanoparticles Multiferroics Ferromagnetic Dielectric 


  1. 1.
    Ramesh, R., Spaldin, N.A.: Nat. Mater. 6, 21 (2007)CrossRefADSGoogle Scholar
  2. 2.
    Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M., Ramesh, R.: Science 299, 1719 (2003)CrossRefADSGoogle Scholar
  3. 3.
    Hur, N., Park, S., Sharma, P.A., Ahn, J.S., Guha, S., Cheong, S.W.: Nat. London 429, 392 (2004)CrossRefADSGoogle Scholar
  4. 4.
    Dhir, G., Uniyal, P., Verma, N. K.: Mater. Sci. Semicond. Proc. 27, 611 (2014)CrossRefGoogle Scholar
  5. 5.
    Kim, Y.S., Tai, W.P., Shul, S.J.: Thin Solid Films 491, 153 (2005)CrossRefADSGoogle Scholar
  6. 6.
    Grigorjeva, L., Millers, D., Smits, K., Monty, C., Kouam, J., El Mir, L.: Solid State Phenom. 128, 135 (2007)CrossRefGoogle Scholar
  7. 7.
    Yan, L., Ong, C.K., Rao, X.S.: J. Appl. Phys. 96, 508 (2004)CrossRefADSGoogle Scholar
  8. 8.
    Rao, B.B.: Mater. Chem. Phys. 64, 62 (2000)CrossRefGoogle Scholar
  9. 9.
    Birkmire, R.W., Eser, E.: Annu. Rev. Mater. Sci. 27, 625 (1997)CrossRefADSGoogle Scholar
  10. 10.
    Gao, D., Zhang, Z., Fu, J., Xu, Y., Qi, J., Xue, D.: J. Appl. Phys. 105, 113928 (2009)CrossRefADSGoogle Scholar
  11. 11.
    Liu, C., Yun, F., Morkoc, H.: J. Mater. Sci.: Mater. Electron. 16, 555 (2005)Google Scholar
  12. 12.
    Lin, Y.H., Ying, M., Li, M., Wang, X., Nan, C.W.: Appl. Phys. Lett. 90, 222110 (2007)CrossRefADSGoogle Scholar
  13. 13.
    Yang, Y.C., Zhong, C.F., Wang, X.H., He, B., Wei, S.Q., Zeng, F., Pan, F.: J. Appl. Phys. 104, 064102 (2008)CrossRefADSGoogle Scholar
  14. 14.
    Kumar, P., Kumar, Y., Malik, H.K., Annapoorni, S., Gautam, S., Chae, K.H., Asokan, K.: Appl. Phys. A 114, 453 (2014)CrossRefADSGoogle Scholar
  15. 15.
    Sharma, N., Gaur, A., Kumar, V., Kotnala, R.K.: Superlatt. Microstruct. 65, 308 (2014)Google Scholar
  16. 16.
    Cullity, B.D.: Elements of X-ray diffraction. Addison-Wesley Mass (1978)Google Scholar
  17. 17.
    Motaung, D.E., Mhlongo, G.H., Nkosi, S.S., Malgas, G.F., Mwakikunga, B.W., Coetsee, E., Swart, H.C., Abdallah, H.M., Moyo, T., Ray, S.S.: ACS Appl. Mater. Interfaces 6, 8981 (2014)CrossRefGoogle Scholar
  18. 18.
    Oh, J.Y., Lim, S.C., Ahn, S.D., Lee, S.S., Cho, K.K., Koo, J.B., Choi, R., Hasan, M.: J. Phys. D: Appl. Phys. 46, 285101 (2013)CrossRefGoogle Scholar
  19. 19.
    Shi, Q., Zhang, J., Zhang, D., Wang, C., Yang, B., Zhang, B., Wang, W.: Mater. Sci. Eng. B 177, 689 (2012)CrossRefGoogle Scholar
  20. 20.
    Limaye, M.V., Singh, S.B., Das, R., Poddar, P., Kulkarni, S.K.: J. Solid Stat. Chem. 184, 391 (2011)CrossRefADSGoogle Scholar
  21. 21.
    Prodromakis, T., Papavassiliou, C.: Appl. Surf. Sci. 255, 6989 (2009)CrossRefADSGoogle Scholar
  22. 22.
    Koop’s, C.: Phys. Rev. 121, 83 (1951)Google Scholar
  23. 23.
    Carl, K., Hardtl, K.H.: Ferroelectrics 17, 473 (1977)CrossRefGoogle Scholar
  24. 24.
    Kumar, S., Verma, N.K.: J. Electron. Mater. (2015). 10.1007/s11664-015-3688-6 Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Applied SciencesChandigarh UniversityMohaliIndia
  2. 2.Nano Research Lab, School of Physics and Materials ScienceThapar UniversityPatialaIndia

Personalised recommendations