Journal of Superconductivity and Novel Magnetism

, Volume 28, Issue 9, pp 2657–2662 | Cite as

Mössbauer Study of Superconductors LaFeO0.88F0.12As

  • A. V. Alduschenkov
  • O. V. Geraschenko
  • A. L. Kholmetskii
  • V. A. Lomonosov
  • L. V. Mahnach
  • M. Mashlan
  • J. Navarik
  • I. S. Okunev
  • V. V. Pan’kov
  • J. Tucek
  • T. Yarman
Original Paper
  • 91 Downloads

Abstract

This study continues our investigation of high-temperature superconductors of LaFeO(1−x)FxAs type initiated in our previous paper (J. Supercond. Nov. Magnetism 27, 1825, [1]), where the high-temperature Kondo effect had been observed in the sample with x = 0.15. We proceed with exploring the properties of the LaFeO 0.88F0.12As sample, applying the X-ray diffraction (XRD) method, resistivity measurement, and the magnetic and Mössbauer measurements at the temperature range of 4.2-300 K. We observe the emergence of high-temperature Kondo effect at the temperatures between 30 and 50 K. At the same time, as opposed to the case x=0.15, we reveal the transformation of the high-temperature Kondo effect to the high-temperature superconductivity at the temperature near 25 K. The Mössbauer spectra of the sample obtained at different temperatures represent a single line, lying near zero relative velocity and do not exhibit any visible alterations. Concurrently, the application of an external magnetic field of 5 T to the sample at 5 K induces the emergence of a hyperfine magnetic splitting with the effective magnetic field on resonant nuclei Hef = 45.5 kOe. We suppose that the appearance of a magnetic ordering in the sample occurs due to the alignment of magnetic moments of impurities that confirms our hypothesis about a strong coupling of electron’s spins with the magnetic moments of impurities in iron-containing superconductors.

Keywords

High-temperature superconductivity Iron-containing superconductors Mössbauer spectroscopy 

References

  1. 1.
    Alduschenkov, A.V., et al.: J. Supercond. Nov. Magnetism 27, 1825 (2014)CrossRefGoogle Scholar
  2. 2.
    Kondo, J.: Prog. Theor. Phys. 32, 37 (1964)ADSCrossRefGoogle Scholar
  3. 3.
    Iimura, S., Matsuishi, S., Sato, H., et al.: Nature Communications 3, 943 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Kitao, S., et al.: J. Phys. Sci. Jpn. 77, 103706 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Mazin, I.I., Singh, D.J., Johannes, M.D., Du, M.H.: Phys. Rev. Lett. 101, 05700 (2008)Google Scholar
  6. 6.
    Kuroki, K., et al.: Phys. Rev. Lett. 101, 087004 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Werner, P.-E., Eriksson, L., Westdahl, M.: J. Appl. Crystallogr. 18, 367 (1985)CrossRefGoogle Scholar
  8. 8.
    Boeri, L., Dolgov, O.V., Golubov, A.A.: Phys. Rev. Lett. 101, 026403 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: J. Am. Chem. Soc. 130, 3296 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • A. V. Alduschenkov
    • 1
  • O. V. Geraschenko
    • 1
  • A. L. Kholmetskii
    • 2
  • V. A. Lomonosov
    • 2
  • L. V. Mahnach
    • 2
  • M. Mashlan
    • 3
  • J. Navarik
    • 3
  • I. S. Okunev
    • 1
  • V. V. Pan’kov
    • 2
  • J. Tucek
    • 3
  • T. Yarman
    • 4
  1. 1.St. Petersburg Institute of Nuclear PhysicsGatchinaRussia
  2. 2.Belarusian State UniversityMinskBelarus
  3. 3.Palacky UniversityOlomoucCzech Republic
  4. 4.Okan UniversityIstanbulTurkey

Personalised recommendations