Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 28, Issue 9, pp 2735–2742 | Cite as

Effect of Dopant Concentration on Electronic and Magnetic Properties of Transition Metal-Doped ZrO2

  • K. Seema
  • Ranjan Kumar
Original Paper

Abstract

Electronic and magnetic properties of the bulk monoclinic phase of pure and doped zirconia (ZrO2) are calculated. Calculations have been performed using density functional theory based Spanish Initiative for Electronic Simulations with Thousands of Atoms (SIESTA) code. We have considered substitutional doping of transition metals (TM) V, Cr, Mn and Fe in zirconia corresponding to concentrations ranging from 3.125 to 25 %. Our results show that Cr, Mn-, and Fe doped oxides are half-metallic and the half-metallicity remains intact on reducing the dopant concentrations. The total magnetic moment is mainly due to d states of TM atoms and small induced magnetic moment exists on other nonmagnetic atoms as well. Also as the oxygen vacancy influences the performance of oxidebased devices, therefore we model the influence of oxygen vacancy on the magnetic moments in pure and doped zirconia. Our results show that pure oxide system remains nonmagnetic even on the introduction of oxygen vacancy whereas magnetic moment values for TM doped oxide changes. In the presence of oxygen vacancy, the total magnetic moment of V-, Cr-, and Mn doped cell increases whereas it decreases for Fe doping. This shows that oxygen vacancy (V O) has a strong influence on the magnetic properties of the doped oxides. The results may be useful for further study on TM doped ZrO2 system.

Keywords

Spintronics Dilute magnetic oxides DFT Electronic structure Magnetism 

Notes

Acknowledgments

We acknowledge the SIESTA group for the computational code and HPCC facility at the Department of Physics, Panjab University for providing the computing resources.

References

  1. 1.
    Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnar, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M.: Science 294, 1488 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Johnson, M.: J. Phys. Chem. B 109, 14278 (2005)CrossRefGoogle Scholar
  3. 3.
    Zutic, I., Fabian, J., Sharma, S.D.: Rev. Mod. Phys. 76, 323 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Dielt, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D.: Science 287, 1019 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    Sharma, P., Gupta, A., Rao, K.V., Owens, F.J., Sharma, R., Ahuja, R., Guillen, J.M.O., Johansson, B., Gehring, G.A.: Nat. Mater. 2, 673 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    Ueda, K., Tabata, H., Kawai, T.: Appl. Phys. Lett. 79, 988 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    Liu, Y., Yang, Y., Yang, J., Guan, Q., Liu, H., Yang, L., Zhang, Y., Wang, Y., Wei, M., Liu, X., Fei, L., Cheng, X.: J. Solid State Chem. 184, 1273 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Ohno, H.: Science 281, 951 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    Hou, D.L., Zhao, R.B., Meng, H.J., Jia, L.Y., Ye, X.J., Zhou, H.J., Li, X.L.: Thin Solid Films 516, 3223 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Coey, J.M.D., Venkatesan, M., Fitzgerald, C.B.: Nat. Mater. 4, 173 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Ogale, S.B., Choudhary, R.J., Buban, J.P., Lofland, S.E., Shinde, S.R., Kale, S.N., Kulkarni, V.N., Higgins, J., Lanci, C., Simpson, J.R., Browning, N.D., Sharma, S.D., Drew, H.D., Greene, R.L., Venkatesan, T.: Phys. Rev. Lett. 91, 077205 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    Ostanin, S., Ernst, A., Sandratskii, L.M., Bruno, P., Dane, M., Hergert, W., Mertig, I., Kudrnovskoy, J.: Phys. Rev. Lett. 98, 016101 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Chang, S., Doong, R.: J. Phys. Chem. B 108, 18098 (2004)CrossRefGoogle Scholar
  14. 14.
    Hong, N.H., Poirot, N., Sakai, J.: Appl. Phys. Lett. 89, 042503 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Seema, K., Kumar, R.: Quantum Matter 4(4), 1 (2015)Google Scholar
  16. 16.
    Gao, L., Zhou, L., Feng, J., Bai, L., Li, C., Liu, Z., Soubeyroux, J.-L., Lu, Y.: Ceram. Int. 38, 2305 (2012)CrossRefGoogle Scholar
  17. 17.
    Wilk, G.D., Wallace, R.M., Anthony, J.M.: J. Appl. Phys 89, 5243 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    Nishi, Y.: ECS Trans. 19, 3 (2009)CrossRefGoogle Scholar
  19. 19.
    Ishimaru, K.: Solid State Electron. 52, 1266 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Konda, R.B., White, C., Smak, J., Mundle, R., Bahoura, M., Pradhan, A.K.: Chem. Phys. Lett. 583, 74 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Hudait, M.K., Zhu, Y., Maurya, D., Priya, S.: Appl. Phys. Lett. 102, 093109 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Sato, K., Bergqvist, L., Kudrnovský, J., Dederichs, P.H., Eriksson, O., Turek, I., Sanyal, B., Bouzerar, G., Yoshida, H.K., Dinh, V.A., Fukushima, T., Kizaki, H., Zeller, R.: Rev. Mod. Phys 82, 1633 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Schmidt, G., Ferrand, D., Molenkamp, L.W., Filip, A.T., Wees, B.J.: Phys. Rev. B 62, R4790 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    Maznichenko, I.V., Ostanin, S., Ernst, A., Mertig, I.: J. Mag. Magn. Mater. 321, 913 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    Zhou, W., Xing, P., Liu, L., Wu, P.: Scr. Mater. 63, 776 (2010)CrossRefGoogle Scholar
  26. 26.
    Archer, T., Pemmaraju, C.D., Sanvito, S.: J. Mag. Magn. Mater. 316, e188 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    Vincenzo, D.P.: J. Appl. Phys. 85, 4785 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    Hong, N.H., Park, C.K., Raghavender, A.T., Ciftja, O., Bingham, N.S., Phan, M.H., Srikanth, H.: J. Appl. Phys. 111, 07C302 (2012)Google Scholar
  29. 29.
    Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Portal, D.S.: J. Phys. Condens. Matter 14, 2745 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    Perdew, J.P., Burke, K., Erzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    Troullier, N., Martins, J.L.: Phys. Rev. B 43, 1993 (1992)ADSCrossRefGoogle Scholar
  32. 32.
    Aldebert, P., Traverse, P.: J. Am. Ceram. Soc. 68, 34 (1985)CrossRefGoogle Scholar
  33. 33.
    Zhang, Y.L., Tao, X.M., Tan, M.Q.: J. Mag. Magn. Mater. 325, 7 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    Inomata, K., Ikeda, N., Tezuka, N., Goto, R., Sugimoto, S., Wojcik, M., Jedryka, E.: Sci. Technol. Adv. Mater. 9, 014101 (2008)CrossRefGoogle Scholar
  35. 35.
    Berger, L.: Phys. Rev. B 54, 13 (1996)Google Scholar
  36. 36.
    Shen, L., Wu, R.Q., Pan, H., Peng, G.W., Yang, M., Sha, Z.D., Feng, Y.P.: Phys. Rev. B 78, 073306 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    Ren, F., Ishida, S., Takeuchi, N.: J. Am. Ceram. Soc. 76, 1825 (1993)CrossRefGoogle Scholar
  38. 38.
    Park, M.S., Min, B.I.: Phys. Rev. B 68, 224436 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    Wang, X.L., Dai, Z.X., Zeng, Z.: J. Phys.: Condens. Matter 20, 045214 (2008)ADSGoogle Scholar
  40. 40.
    Foster, A.S., Gejo, F.L., Shluger, A.L., Nieminen, R.M.: Phys. Rev. B 65, 174117 (2002)ADSCrossRefGoogle Scholar
  41. 41.
    Bouzerar, G., Ziman, T.: Phys. Rev. Lett. 96, 207602 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    Hong, N.H., Sakai, J., Poirot, N., Brize, V.: Phys. Rev. B 73, 132404 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    Xu, J.P., Wang, J.F., Lin, Y.B., Liu, X.C., Lu, Z.L., Lu, Z.H., Lv, L.Y., Zhang, F.M., Du, Y.W.: J. Phys. D: Appl. Phys. 40, 4757 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    Hsu, H.S., Huang, J.C.A., Huang, Y.H., Liao, Y.F., Lin, M.Z., Lee, C.H., Lee, J.F., Chen, S.F., Lai, L.Y., Liu, C.P.: Appl. Phys. Lett. 88, 242507 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    Khare, A., Choudhary, R.J., Phase, D.M., Sanyal, S.P.: J. Appl. Phys. 109, 123706 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    Sharma, S.K., Knobel, M., Meneses, C.T., Kumar, S., Kim, Y.J., Koo, B.H., Lee, C.G., Shukla, D.K., Kumar, R.: J. Korean Phys. Soc. 55, 1018 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of PhysicsPGGC-11ChandigarhIndia
  2. 2.Department of PhysicsPanjab UniversityChandigarhIndia

Personalised recommendations