Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 28, Issue 4, pp 1355–1363 | Cite as

CDW and Similarity of the Mott Insulator-to-Metal Transition in Cuprates with the Gas-to-Liquid-Liquid Transition in Supercooled Water

  • G. CampiEmail author
  • D. Innocenti
  • A. Bianconi
Original Paper

Abstract

New advances in X-ray diffraction, extended X-ray absorption fine structure (EXAFS), and X-ray absorption near edge structure (XANES) using synchrotron radiation have now provided compelling evidence for a short-range charge density wave phase (CDW) called striped phase in the CuO2 plane of all cuprate high-temperature superconductors. The CDW is associated with a bond order wave (BOW) and an orbital density wave (ODW) forming nanoscale puddles which coexist with superconducting puddles below T c . The electronic CDW crystalline phase occurs around the hole doping 0.125 between the Mott charge transfer insulator and the 2D metal. The Van der Waals (VdW) theoretical model for a liquid of anisotropic extended objects proposed for supercooled water is used to describe the following: (a) the underdoped regime as a first spinodal regime of a “slightly doped charge transfer Mott insulator puddles coexisting with the striped polaronic CDW puddles;nd (b) the optimum doping regime as a second spinodal regime where striped polaronic CDW puddles coexist with the normal 2D metal puddles. This complex phase separation with three competing phases depends on the strength of the anisotropic electron-phonon interaction that favours the formation striped polaronic CDW phase.

Keywords

High temperature superconductivity Phase separation CDW Charge density wave 

References

  1. 1.
    Pouget, J.-P.: Bond and charge ordering in low-dimensional organic conductors. Phys. B Condens. Matter 407, 1762–1770 (2012). doi: 10.1016/j.physb.2012.01.025 CrossRefADSGoogle Scholar
  2. 2.
    Gabovich, A.M., Voitenko, A.I., Annett, J.F., Ausloos, M.: Charge- and spin-density-wave superconductors. Supercond. Sci. Technol. 14, R1–R27 (2001). doi: 10.1088/0953-2048/14/4/201 CrossRefADSGoogle Scholar
  3. 3.
    Monceau, P.: Electronic crystals: an experimental overview. Adv. Phys. 61(4), 325–581 (2012). doi: 10.1080/00018732.2012.719674 CrossRefADSGoogle Scholar
  4. 4.
    Drechsler, Malek, J., Lavrentiev, M.: Nonlinear excitations and phonons in alternating chains with mixed CDW-BOW ground state. Le J. Phys. IV 03(C2), C2-273–C2-276 (1993). doi: 10.1051/jp4:1993255 Google Scholar
  5. 5.
    Le Bolloc’h, D., Jacques, V., Kirova, N., Dumas, J., Ravy, S., Marcus, J., Livet, F.: Observation of correlations up to the micrometer scale in sliding charge-density waves. Phys. Rev. Lett. 100, 096403 (2008). doi: 10.1103/physrevlett.100.096403 CrossRefADSGoogle Scholar
  6. 6.
    Hohenadler, M., Wellein, G., Bishop, A.R., Alvermann, A., Fehske, H.: Spectral signatures of the Luttinger liquid to charge-density-wave transition. Phys. Rev. B 73(24) (2006). doi: 10.1103/physrevb.73.245120
  7. 7.
    Aubry, S.: Many polaron-bipolaron structures. In: Alexandrov, A.S. (ed.) Polarons in Advanced Materials Springer Series Materials Science, Vol. 103, p 311. Springer, Berlin Heidelberg New York (2007)Google Scholar
  8. 8.
    Bianconi, A., Flank, A.M., Lagarde, P., Li, C., Pettiti, I., Pompa, M., Udron, D.: On the orbital angular momentum of Cu 3d holes in high Tc superconductors. Is a Cu 3dz2 bipolaron the superconducting pair? In: Ashkenazi, J., Barnes, S.E., Zuo, F., Vezzoli, G.C., Klein, B.M. (eds.) High-Temperature Superconductivity Physical Properties, Microscopic Theory, and Mechanisms. ISBN 978-1-4613-6471-9. http://link.springer.com/chapter/10.1007%252F978-1-4615-3338-2_39, p. 363+. Springer, Boston, MA (1991)
  9. 9.
    Bianconi, A., Della Longa, S., Missori, M., Pettiti, M., Pompa, M.: Non homogeneous Cu site structure configurations and Cu apical oxygen vibrations at the normal to superconductor transition. In: Egami, T., Mustre-de Leon, J., Bar-Yam, Y., Bishop, A.R. (eds.) Proceedings of the Conference Lattice Effects in High-Tc Superconductors. World Scientific, Santa Fe, New Mexico (1992). http://www.worldcat.org/isbn/9789810209704
  10. 10.
    Bianconi, A.: Phase separation in cuprate superconductors. In: Müller, K.A., Benedek, G. (eds.) Proceedings of the Workshop Held in Erice. World Scientific, Singapore (1993)Google Scholar
  11. 11.
    Bianconi, A., Della Longa, S., Missori, M., Pettiti, I., Pompa, M., Soldatov, A.: Structure of the different Cu sites in the corrugated CuO2 plane in high Tc superconductors. Jpn. J. Appl. Phys. Supplement 32(32-2), 578–580 (1993) http://jjap.jsap.jp/link?JJAPS/32S2/578/]CrossRefADSGoogle Scholar
  12. 12.
    Bianconi, A., della Longa, S., Missori, M., Li, C., Pompa, M., Soldatov, A., Turtu, S., Pagliuca, S.: Two types of carriers and the corrugated CuO2 plane. In: Gan, Z., Xie, S.S., Zhao, Z.X. (eds.) Proceedings of the Beijing International Conference on High-Temperature Superconductivity (BHTSC ’92). World Scientific, Singapore (1993). http://www.worldcat.org/isbn/9810211678 Google Scholar
  13. 13.
    Bianconi, A., Missori, M., Oyanagi, H., Yamaguchi, H.: Polaron size and ordering by x-ray absorption: the quantum confinement of a 2D Fermi liquid giving high-Tc superconductivity. SPIE, Proc. 2158, 78–85 (1994). doi:  10.1117/12.182701
  14. 14.
    Bianconi, A., Missori, M.: The coupling of a wigner polaronic charge density wave with a Fermi liquid arising from the instability of a Wigner polaron crystal: a possible pairing mechanism in high Tc superconductors. In: Sigmund, E., M¨uller, K.A. (eds.) Proceedings of the Workshop on Phase Separation in Cuprate Superconductors Cottbus 1993, in Phase Separation in Cuprate Superconductors, pp. 272–289. Springer, Berlin Heidelberg New York (1994). arXiv: 0906.5341.pdf
  15. 15.
    Bianconi, A.: On the Fermi liquid coupled with a generalized Wigner polaronic CDW giving high Tc superconductivity. Solid State Commun. 91, 1–5 (1994). doi: 10.1016/0038-1098(94)90831-1 CrossRefADSGoogle Scholar
  16. 16.
    Lanzara, A., Saini, N.L., Brunelli, M., Valletta, A., Bianconi, A.: Evidence for onset of charge density wave in the La-based perovskite superconductors. J. Supercond. Nov. Magn. 10, 319–321 (1997). doi: 10.1007/bf02765711 CrossRefADSGoogle Scholar
  17. 17.
    Bianconi, A., Saini, N.L., Lanzara, A., Missori, M., Rossetti, T., Oyanagi, H., Yamaguchi, H., Oka, K., Ito, T.: Determination of the local lattice distortions in the CuO2 plane of La1.85Sr0.15CuO4. Phys. Rev. Lett. 76, 3412–3415 (1996). doi: 10.1103/physrevlett.76.3412 CrossRefADSGoogle Scholar
  18. 18.
    Lanzara, A., Saini, N.L., Bianconi, A., Hazemann, J L., Soldo, Y., Chou, F.C., Johnston, D.C.: Temperature-dependent modulation amplitude of the CuO2 superconducting lattice in La2CuO4.1. Phys. Rev. B 55, 9120–9124 (1997). doi: 10.1103/physrevb.55.9120 CrossRefADSGoogle Scholar
  19. 19.
    Pompa, M., Turtù, S., Bianconi, A., Campanella, F., Flank, A.M., Lagarde, P., Li, C., Pettiti, I., Udron, D.: Coupling between the charge carriers and lattice distortions via modulation of the orbital angular momentum of the 3d holes by polarized xas spectroscopy. Physica C: Supercond., 185–189, 1061-1062 (1991). doi: 10.1016/0921-4534(91)91754-r
  20. 20.
    Bianconi, A.: The instability close to the 2D generalized wigner polaron crystal density: a possible pairing mechanism indicated by a key experiment. Physica C: Supercond., 235–240, 269-272 (1994). doi: 10.1016/0921-4534(94)91366-8
  21. 21.
    Bianconi, A., Missori, M.: The instability of a 2D electron gas near the critical density for a Wigner polaron crystal giving the quantum state of cuprate superconductors. Solid State Commun. 91, 287–293 (1994). doi: 10.1016/0038-1098(94)90304-2 CrossRefADSGoogle Scholar
  22. 22.
    Bianconi, A., Missori, M.: High Tc superconductivity by quantum confinement. J. Phys. I 4, 361–365 (1994). doi: 10.1051/jp1:1994100 Google Scholar
  23. 23.
    Bianconi, A., Missori, M., Oyanagi, H., Yamaguchi, H., Ha, D.H., Nishihara, Y.: Lattice anomaly at T approx 1.4Tc in Bi 2212 measured by EXAFS: the onset of a generalized wigner polaronic charge density wave. Denshi Gijutsu Sogo Kenkyusho Iho/Bull. Electrotechnical Lab. 58, 16–21 (1994)Google Scholar
  24. 24.
    Missori, M., Bianconi, A., Saini, N. L., Oyanagi, H.: High critical temperature by resonant quantum confinement: Evidence for polarons ordering at T≈1.5Tc in Bi-2212 and La-214 by EXAFS. Il Nuovo Cimento D 16, 1815–1820 (1994). doi: 10.1007/bf02462179 CrossRefADSGoogle Scholar
  25. 25.
    Missori, M., Bianconi, A., Oyanagi, H., Yamaguchi, H.: Evidence for local lattice instability at T ∼ 1.4 Tc in Bi2212 by EXAFS. Physica C: Supercond., 235–240, 1245–1246 (1994). doi: 10.1016/0921-4534(94)91847-3
  26. 26.
    Bianconi, A., Missori, M., Oyanagi, H., Yamaguchi, H., Nishiara, Y., Della Longa, S. Europhys. Lett. (EPL) 31, 411–415 (1995) http://iopscience.iop.org/0295-5075/31/7/012 CrossRefADSGoogle Scholar
  27. 27.
    Saini, N., Lanzara, A., Missori, M., Rossetti, T., Bianconi, A., Oyanagi, H., Yamaguchi, H., Oka, K., Ito, T.: Local lattice instability of CuO2 plane in La1.85Sr0.15CuO4 by polarized Cu K edge absorption. Physica C: Supercond. 251, 383–388 (1995) doi: 10.1016/ 0921-4534(95)00391-6 CrossRefADSGoogle Scholar
  28. 28.
    Lanzara, A., Saini, N.L., Rossetti, T., Bianconi, A., Oyanagi, H., Yamaguchi, H., Maeno, Y.: Temperature dependent local structure of the CuO2 plane in the doped La1.875Ba0.125CuO4 system. Solid State Commun. 97, 93–96 (1996) doi: 10.1016/0038-1098(95)00590-0 CrossRefADSGoogle Scholar
  29. 29.
    Saini, N.L., Lanzara, A., Oyanagi, H., Yamaguchi, H., Oka, K., Ito, T., Bianconi, A.: Local lattice instability and stripes in the CuO2 plane of the La1.85Sr0.15CuO4 system by polarized XANES and EXAFS. Phys. Rev. B 55, 12759–12769 (1997) doi: 10.1103/ physrevb.55.12759 CrossRefADSGoogle Scholar
  30. 30.
    Bianconi, A., Saini, N.L., Lanzara, A., Lusignoli, M., Rossetti, T., Radaelli, P.G., Bordet, P., Kvick, Ã., Oyanagi, H.: Stripe structure and non-homogeneity of the CuO2 plane by joint EXAFS and diffraction. Le J. Phys. IV 7(C2), C2-735–C2-740 (1997). doi: 10.1051/jp4:1997222 Google Scholar
  31. 31.
    Conradson, S.D. et al.: Local phase separation in Tl-based oxide superconductors. J. Supercond. 10, 329 (1997). http://link.springer.com/article/10.1007/BF02765713#page-1
  32. 32.
    Saini, N.L., Oyanagi, H., Lanzara, A., Di Castro, D., Agrestini, S., Bianconi, A., Nakamura, F., Fujita, T.: Evidence for local lattice fluctuations as a response function of the charge stripe order in the La1.48Nd0.4Sr0.12CuO4 system. Phys. Rev. B 64, 132510+ (2001). doi: 10.1103/physrevb.64.132510 CrossRefADSGoogle Scholar
  33. 33.
    Saini, N.L., Oyanagi, H., Ito, T., Scagnoli, V., Filippi, M., Agrestini, S., Campi, G., Oka, K., Bianconi, A.: Temperature dependent local Cu-O displacements from underdoped to overdoped La-Sr-Cu-O superconductor. Eur. Phys. J. B- Condens. Matter Complex Systems 36, 75–80 (2003). doi: 10.1140/epjb%252fe2003-00318-9 CrossRefGoogle Scholar
  34. 34.
    Saini, N.L., Oyanagi, H., Scagnoli, V., Ito, T., Oka, K., Bianconi, A.: Different temperature-dependent local displacements in the underdoped and overdoped La2−xSrxCuO4 system. Europhys. Lett. (EPL) 63, 125–131 (2003). doi: 10.1209/epl/i2003-00487-7 CrossRefADSGoogle Scholar
  35. 35.
    Bianconi, A., Saini, N.L.: Nanoscale lattice fluctuations in cuprates and manganites. In: Müller, A.K., Bussmann-Holder, A. (eds.) Superconductivity in Complex Systems of Structure and Bonding, vol. 114, pp. 287–330. Springer, Berlin Heidelberg (2005), doi: 10.1007/b101023
  36. 36.
    Koningsberger, D.C., Prins, R., Stern, E.A., Durham, P.J., Heald, S.M., Sayers, D.E., Bunker, B.A., Cramer, S.P., Prins, R., Crozier, E.D., Rehr, J.J., Ingalls, R., St¨ohr, J., Bianconi, A.: X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES. Chemical analysis (see the chapter “XANES spectroscopy” by A. Bianconi) Vol. 92. Wiley (1988). http://www.worldcat.org/title/x-ray-absorption-principles-applications-techniques-of-exafs-sexafs-and-xanes/oclc/14904784#relatedsubjects
  37. 37.
    Bianconi, A., Doniach, S., Lublin, D.: X-ray Ca K edge of calcium adenosine triphosphate system and of simple Ca compunds. Chem. Phys. Lett. 59, 121–124 (1978). doi: 10.1016/0009-2614(78)85629-2 CrossRefADSGoogle Scholar
  38. 38.
    Stizza, S., Mancini, G., Benfatto, M., Natoli, C.R., Garcia, J., Bianconi, A.: Structure of oriented V2O5 gel studied by polarized x-ray-absorption spectroscopy at the vanadium K edge. Phys. Rev. B 40, 12229–12236 (1989). doi: 10.1103/physrevb.40.12229 CrossRefADSGoogle Scholar
  39. 39.
    Bianconi, A., Castellano, Santis, M., Politis, C., Marcelli, A., Mobilio, S., Savoia, A.: Lack of delocalized Cu (2p) states at the Fermi level in the high-Tc superconductor YBa2Cu3O<7 by XANES spectroscopy. Z. Phys B Condens. Matter 67, 307–312 (1987). doi: 10.1007/bf01307254 CrossRefADSGoogle Scholar
  40. 40.
    Li, C., Pompa, M., Congiu-Castellano, A., Della-Longa, S., Bianconi, A. Physica C: Supercond. 175, 369–380 (1991). doi: 10.1016/0921-4534(91)90611-2 CrossRefADSGoogle Scholar
  41. 41.
    Bianconi, A., Della Longa, S., Li, Pompa, M., Congiu-Castellano, A., Udron, D., Flank, A.M., Lagarde, P.: Linearly polarized Cu L3-edge x-ray-absorption near-edge structure of Bi2CaSr2Cu2O8. Phys. Rev. B Condens. Matter 44(18), 10126–10138 (1991). doi:  10.1103/physrevb.44.10126
  42. 42.
    Balzarotti, A., Menushenkov, A.P., Motta, N., Purans, J.: EXAFS of the superconducting oxide BaPb1−xBixO3. Solid State Commun. 49, 887–890 (1984). doi: 10.1016/0038-1098(84)90447-2 CrossRefADSGoogle Scholar
  43. 43.
    Salem-Sugui, S., Alp, E., Mini, S., Ramanathan, M., Campuzano, J., Jennings, G., Faiz, M., Pei, S., Dabrowski, B., Zheng, Y., Richards, D., Hinks, D.: Determination of the local structure in Ba1−x K xBiO3 by x-ray-absorption spectroscopy. Phys. Rev. B 43(7), 5511–5515 (1991). doi: 10.1103/physrevb.43.5511 CrossRefADSGoogle Scholar
  44. 44.
    Ignatov, A.Y., Menushenkov, A.P., Klementev, K.V., Bratukhin, P.B., Kochubey, D.I.: The superconducting properties and x-ray absorption structure data of BaPb0.75Bi0.25 O 3 at oxygen deficiency. Physica C: Supercond., 235–240, 1043–1044 (1994). doi: 10.1016/0921-4534(94)91746-9
  45. 45.
    Du, C.H., Hatton, P.D.: Observation of an incommensurate charge density wave in the oxide superconductor Ba1−xKxBiO3. Europhys. Lett. (EPL) 31(3), 145+ (1995). doi: 10.1209/0295-5075/31/3/004 CrossRefADSGoogle Scholar
  46. 46.
    Ignatov, A.Y., Menushenkov, A.P., Chernov, V.A.: Influence of oxygen deficiency on the electronic and local structure of BaPb1−xBixO3−δ and Ba0.6K0.4BiO3−δ superconducting oxides: an x-ray absorption study. Physica C: Supercond. 271(1-2), 32–50 (1996). doi: 10.1016/s0921-4534(96)00522-9 CrossRefADSGoogle Scholar
  47. 47.
    Klinkova, L., Uchida, M., Matsui, Y., Nikolaichik, V., Barkovskii, N.: Noncubic layered structure of Ba1−xKxBiO3 superconductor. Phys. Rev. A 67, 140501(R) (2003). doi: 10.1103/physrevb.67.140501
  48. 48.
    Kim, B.J., Kim, Y.C., Kim, H.-T., Kang, K.-Y., Lee, J.M.: EXAFS observation of two distinct Bi–O distances below Tc for a Ba0.6K0.4BiO3 single crystal. Physica C: Supercond., 392–396, 286–290 (2003). doi: 10.1016/s0921-4534(03)00935-3
  49. 49.
    Holub-Krappe, E., Aminpirooz, S., Becker, L., Keil, M., Schellenberger, A., Rossner, H.: Photoemission and EXAFS study of Na on 2H- TaS2. In: Misaelides, P. (ed.) Application of Particle and Laser Beams in Materials Technology of NATO ASI Series, vol. 283, pp. 653–660. Springer, Netherlands (1995), doi: 10.1007/978-94-015-8459-3_46
  50. 50.
    Kim, T.K., Babenko, V.P., Kochubey, D.I.: Study of polarized XANES TaL3 spectra of 1T- T a S 2 monocrystals. Nucl. Inst. Methods Phys. Res Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 448(1-2), 327–331 (2000). doi: 10.1016/s0168-9002(99)00718-4 CrossRefADSGoogle Scholar
  51. 51.
    Rocquefelte, X., Boucher, F., Gressier, P., Ouvrard, G., Blaha, P., Schwarz, K.: Mo cluster formation in the intercalation compound LiMoS2. Phys. Rev. B 62(4), 2397–2400 (2000). doi: 10.1103/physrevb.62.2397 CrossRefADSGoogle Scholar
  52. 52.
    Ignatov, A.: Towards a limited XANES refinement in strongly correlated systems. J. Synchrotron Radiat. 8(2), 223–225 (2001). doi: 10.1107/s0909049501000231 CrossRefGoogle Scholar
  53. 53.
    Huang, C.H., Jan, J.C., Chiou, J.W., Tsai, H.M., Pao, C.W., Du, C.H., Pong, W.F., Tsai, M.H., Tang, M.T., Lee, J.J., Lee, J.F.: Electronic and atomic structures of quasi-one-dimensional K0.3MoO3. Appl. Phys. Lett. 86, 141905 (2005). doi: 10.1063/1.1897437 CrossRefADSGoogle Scholar
  54. 54.
    Nelson, E., Allen, P., Blobaum, K., Wall, M., Booth, C.: Local structure and vibrational properties of α-Pu, α-U, and the α-U charge-density wave. Phys. Rev. B 71(18), 184113+ (2005). doi: 10.1103/physrevb.71.184113 CrossRefADSGoogle Scholar
  55. 55.
    Weber, F., Castellan, J.P., Rosenkranz, S., Osborn, R., Rosenmann, D., Iavarone, M.: Extended X-ray absorption fine structure spectroscopy in Co0.013NbSe2. J. Phys. Conf. Ser. 200, 012224 (2010). doi: 10.1088/1742-6596/200/1/012224 CrossRefADSGoogle Scholar
  56. 56.
    Joseph, B., Bendele, M., Simonelli, L., Maugeri, L., Pyon, S., Kudo, K., Nohara, M., Mizokawa, T., Saini, N.L.: Local structural displacements across the structural phase transition in IrTe2: order-disorder of dimers and role of Ir-Te correlations. Phys. Rev. B 88, 224109 (2013). doi: 10.1103/physrevb.88.224109 CrossRefADSGoogle Scholar
  57. 57.
    Bianconi, A., Lusignoli, M., Saini, N.L., Bordet, P., Kvick, A., Radaelli, P.G.: Stripe structure of the CuO2 plane in Bi2Sr2CaCu2O8+y by anomalous x-ray diffraction. Phys. Rev. B 54, 4310–4314 (1996). doi: 10.1103/physrevb.54.4310 CrossRefADSGoogle Scholar
  58. 58.
    Blanco-Canosa, S., Frano, A., Loew, T., Lu, Y., Porras, J., Ghiringhelli, G., Minola, M., Mazzoli, C., Braicovich, L., Schierle, E., Weschke, E., Le Tacon, M., Keimer, B.: Momentum-dependent charge correlations in YBa2Cu3O6+δ superconductors probed by resonant x-ray scattering: evidence for three competing phases. Phys. Rev. Lett. 110, 187001 (2013). doi: 10.1103/physrevlett.110.187001 CrossRefADSGoogle Scholar
  59. 59.
    Achkar, A.J., Sutarto, R., Mao, X., He, F., Frano, A., Blanco-Canosa, S., Le Tacon, M., Ghiringhelli, G., Braicovich, L., Minola, M., Moretti Sala, M., Mazzoli, C., Liang, R., Bonn, D.A., Hardy, W.N., Keimer, B., Sawatzky, G.A., Hawthorn, D.G.: Distinct charge orders in the planes and chains of ortho-III-ordered YBa2Cu3O6+δ superconductors identified by resonant elastic x-ray scattering. Phys. Rev. Lett. 109, 167001+ (2012). doi: 10.1103/physrevlett.109.167001 CrossRefADSGoogle Scholar
  60. 60.
    Blanco-Canosa, S., Frano, A., Schierle, E., Porras, J., Loew, T., Minola, M., Bluschke, M., Weschke, E., Keimer, B., Le Tacon, M.: Resonant x-ray scattering study of charge-density wave correlations in YBa2Cu3O6+x. Phys. Rev. B 90, 054513 (2014). doi: 10.1103/physrevb.90.054513 CrossRefADSGoogle Scholar
  61. 61.
    Ghiringhelli, G., Le Tacon, M., Minola, M., Blanco-Canosa, S., Mazzoli, C., Brookes, N.B., De Luca, G.M., Frano, A., Hawthorn, D.G., He, F., Loew, T., Sala, M.M., Peets, D.C., Salluzzo, M., Schierle, E., Sutarto, R., Sawatzky, G.A., Weschke, E., Keimer, B., Braicovich, L.: Long-Range incommensurate charge fluctuations in (Y,Nd) Ba2Cu3O6+x. Science 337, 821–825 (2012). doi: 10.1126/science.1223532. http://www.sciencemag.org/content/337/6096/821 CrossRefADSGoogle Scholar
  62. 62.
    Poccia, N., Ricci, A., Campi, G., Fratini, M., Puri, A., Di Gioacchino, D., Marcelli, A., Reynolds, M., Burghammer, M., Saini, N.L., Aeppli, G., Bianconi, A.: Optimum inhomogeneity of local lattice distortions in La2CuO4+y. Proc. Natl. Acad. Sci. 109, 15685–15690 (2012). doi: 10.1073/pnas.1208492109 CrossRefADSGoogle Scholar
  63. 63.
    Chang, J., Blackburn, E., Holmes, A.T., Christensen, N.B., Larsen, J., Mesot, J., Liang, R., Bonn, D.A., Hardy, W.N., Watenphul, A., Zimmermann, Forgan, E.M., Hayden, S.M.: Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67. Nat. Phys. 8, 871–876 (2012). doi: 10.1038/nphys2456. http://www.nature.com/nphys/journal/v8/n12/full/nphys2456.html CrossRefGoogle Scholar
  64. 64.
    Blackburn, E., Chang, J., Hücker, M., Holmes, A., Christensen, N., Liang, R., Bonn, D., Hardy, W., Rütt, U., Gutowski, O., Zimmermann, M., Forgan, E., Hayden, S.: X-ray diffraction observations of a charge-density-wave order in superconducting Ortho-II single crystals in zero magnetic field. Phys. Rev. Lett. 110, 137004 (2013). doi: 10.1103/physrevlett.110.137004 CrossRefADSGoogle Scholar
  65. 65.
    Hücker, M., Zimmermann, Xu, Z.J., Wen, J.S., Gu, G.D., Tranquada, J.M.: Enhanced charge stripe order of superconducting La2-xBaxCuO4 in a magnetic field. Phys. Rev. B 87, 014501 (2013). doi: 10.1103/physrevb.87.014501 CrossRefADSGoogle Scholar
  66. 66.
    Le Tacon, M., Bosak, A., Souliou, S.M., Dellea, G., Loew, T., Heid, R., Bohnen, K.P., Ghiringhelli, G., Krisch, M., Keimer, B.: Inelastic X-ray scattering in YBa2Cu3O6.6 reveals giant phonon anomalies and elastic central peak due to charge-density-wave formation. Nat. Phys. 10, 52–58 (2013). doi: 10.1038/nphys2805 CrossRefGoogle Scholar
  67. 67.
    Comin, R., Frano, A., Yee, M.M., Yoshida, Y., Eisaki, H., Schierle, E., Weschke, E., Sutarto, R., He, F., Soumyanarayanan, A., He, Y., Le Tacon, M., Elfimov, I.S., Hoffman, J.E., Sawatzky, G.A., Keimer, B., Damascelli, A.: Charge order driven by Fermi-arc instability in Bi2Sr2−xLaxCuO6+δ. Science 343, 390–392 (2014). doi: 10.1126/science.1242996 CrossRefADSGoogle Scholar
  68. 68.
    Croft, T.P., Lester, C., Senn, M.S., Bombardi, A., Hayden, S.M.: Charge density wave fluctuations in La2−xSrxCuO4 and their competition with superconductivity. Phys. Rev. B 89, 224513 (2014).  10.1103/PhysRevB.89.224513 CrossRefADSGoogle Scholar
  69. 69.
    Hücker, M., Christensen, N.B., Holmes, A.T., Blackburn, E., Forgan, E.M., Liang, R., Bonn, D.A., Hardy, W.N., Gutowski, O., Zimmermann, M.v., Hayden, S.M., Chang, J.: Competing charge, spin, and superconducting orders in underdoped YBa2Cu3Oy. Phy. Rev. B 90, 054514 (2014). doi: 10.1103/physrevb.90.054514 CrossRefADSGoogle Scholar
  70. 70.
    Lanzara, A., Zhao, G.-M., Saini, N.L., Bianconi, A., Conder, K., Keller, H., Müller, K.A.: Oxygen-isotope shift of the charge-stripe ordering temperature in La2-xSrxCuO4 from x-ray absorption spectroscopy. J. Phys. Condens. Matter 11, L541–L546 (1999). doi: 10.1088/0953-8984/11/48/103 CrossRefADSGoogle Scholar
  71. 71.
    Bussmann-Holder, A., Keller, H., Bishop, A.R., Simon, A., Micnas, R., Müller, K.A.: Unconventional isotope effects as evidence for polaron formation in cuprates. Europhys. Lett.(EPL), 423+ (2005). doi: 10.1209/epl/i2005-10252-6
  72. 72.
    Kochelaev, B.I., Müller, K.A., Shengelaya, A.: Oxygen isotope effects on Tc related to polaronic superconductivity in underdoped cuprates. J. Mod. Phys. 05(06), 473–476 (2014). doi: 10.4236/jmp.2014.56057 CrossRefGoogle Scholar
  73. 73.
    Di Castro, D., Bianconi, G., Colapietro, M., Pifferi, A., Saini, N.L., Agrestini, S., Bianconi, A.: Evidence for the strain critical point in high Tc superconductors. Eur. Phys. J. B- Condens. Matter Complex Syst. 18(4), 617–624 (2000). doi: 10.1007/s100510070010 CrossRefGoogle Scholar
  74. 74.
    Bianconi, A., Agrestini, S., Bianconi, G., Di Castro, D., Saini, N.L. J. Alloys Compd. 317-318(1-2), 537–541 (2001). doi: 10.1016/s0925-8388(00)01383-9 CrossRefGoogle Scholar
  75. 75.
    Seman, T.F., Ahn, K.H., Lookman, T., Bishop, A.R.: Strain-induced metal-insulator phase coexistence and stability in perovskite manganites. arXiv:1208.4120 (2012)
  76. 76.
    Mustre de León, J.M., Mena, J.M., Bishop, A.R.: Microstrain and polaronic correlation in a model system. J. Phys. Conf. Ser. 108(1), 012020+ (2008). doi: 10.1088/1742-6596/108/1/012020 CrossRefADSGoogle Scholar
  77. 77.
    Bianconi, A., Bianconi, G., Caprara, S., Di Castro, D., Oyanagi, H., Saini, N.L.: The stripe critical point for cuprates. J. Phys. Condens. Matter 12, 10655–10666 (2000). doi: 10.1088/0953-8984/12/50/326 CrossRefADSGoogle Scholar
  78. 78.
    Bianconi, A., Di Castro, D., Bianconi, G., Pifferi, A., Saini, N.L., Chou, F.C., Johnston, D.C., Colapietro, M.: Coexistence of stripes and superconductivity: Tc amplification in a superlattice of superconducting stripes. Physica C: Supercond., 341–348 , 1719–1722 (2000). doi: 10.1016/s0921-4534(00)00950-3
  79. 79.
    Udby, L., Larsen, J., Christensen, N.B., Boehm, M., Niedermayer, C., Mohottala, H.E., Jensen, T.B.S., Toft-Petersen, R., Chou, F.C., Andersen, N.H., Lefmann, K., Wells, B.O.: Measurement of unique magnetic and superconducting phases in oxygen-doped high-temperature superconductors La2−xSrxCuO4+y. Phys. Rev. Lett. 111, 227001 (2013). doi: 10.1103/physrevlett.111.227001
  80. 80.
    Bianconi, A.: Superstripes. Int. J. Mod. Phys. B 14 (29,30 & 31), 3289–3297 (2000). doi: 10.1142/S0217979200003769 CrossRefADSGoogle Scholar
  81. 81.
    Bianconi, A., Poccia, N.: Superstripes and complexity in high-temperature superconductors. J. Supercond. Nov. Magn. 25, 1403–1412 (2012). doi: 10.1007/s10948-012-1670-6 CrossRefGoogle Scholar
  82. 82.
    Bianconi, A.: Quantum materials: shape resonances in superstripes. Nat. Phys. 9, 536–537 (2013). doi: 10.1038/nphys2738 CrossRefMathSciNetGoogle Scholar
  83. 83.
    Caivano, R., Fratini, M., Poccia, N., Ricci, A., Puri, A., Ren, Z.-A., Dong, X.-L., Yang, J., Lu, W., Zhao, Z.-X., Barba, L., Bianconi, A.: Feshbach resonance and mesoscopic phase separation near a quantum critical point in multiband FeAs-based superconductors. Supercond. Sci. Technol. 22, 014004+ (2009). doi: 10.1088/0953-2048/22/1/014004 CrossRefADSGoogle Scholar
  84. 84.
    Agrestini, S., Metallo, C., Filippi, M., Simonelli, L., Campi, G., Sanipoli, C., Liarokapis, E., De Negri, S., Giovannini, M., Saccone, A., Latini, A., Bianconi, A.: Substitution of Sc for Mg in MgB2: effects on transition temperature and Kohn anomaly. Phys. Rev. B 70, 134514+ (2004). doi: 10.1103/physrevb.70.134514 CrossRefADSGoogle Scholar
  85. 85.
    Kremer R.K., Hizhnyakov, V., Sigmund, E., Simon, A., Muller, K.A.: Z. Phys. B Condens. Matter 91, 169 (1993). doi: 10.1007/BF01315232 CrossRefADSGoogle Scholar
  86. 86.
    Kusmartsev, F.V., Di Castro, D., Bianconi, G., Bianconi, A.: Transformation of strings into an inhomogeneous phase of stripes and itinerant carriers. Phys. Lett. A 275, 118–123 (2000). doi: 10.1016/s0375-9601(00)00555-7 CrossRefADSGoogle Scholar
  87. 87.
    Cataudella, V., De Filippis, G., Iadonisi, G., Bianconi, A., Saini, N.L.: Coexistence of charges trapped in local lattice distortions and free carriers in cuprates. Int. J. Mod. Phys. B 14, 3398–3405 (2000)CrossRefADSGoogle Scholar
  88. 88.
    Gor’kov, L.P.: J. Supercond. 13, 765 (2000). doi: 10.1023/A:1007874418264 CrossRefADSGoogle Scholar
  89. 89.
    Kresin, V., Ovchinnikov, Y., Wolf, S.: Inhomogeneous superconductivity and the “pseudogap” state of novel superconductors. Phys. Rep. 431, 231–259 (2006)CrossRefADSGoogle Scholar
  90. 90.
    Müller, K.A.: J. Phys. Condens. Matter 19, 251002+ (2007). ISSN 0953-8984, doi: 10.1088/0953-8984/19/25/251002 CrossRefADSGoogle Scholar
  91. 91.
    Bishop, A.R.: HTC oxides: a collusion of spin, charge and lattice. J. Phys. Conf. Ser. 108, 012027 (2008)CrossRefADSGoogle Scholar
  92. 92.
    Kugel, K., Rakhmanov, A., Sboychakov, A., Poccia, N., Bianconi, A.: Model for phase separation controlled by doping and the internal chemical pressure in different cuprate superconductors. Phys. Rev. B 78, 165124 (2008). doi: 10.1103/physrevb.78.165124 CrossRefADSGoogle Scholar
  93. 93.
    Geballe, T.H., Marezio, M.: Physica C: Supercond. 469, 680 (2009). doi: 10.1016/j.physc.2009.03.054 CrossRefADSGoogle Scholar
  94. 94.
    Gabovich, A.M., Voitenko, A.I.: Model for the coexistence of d -wave superconducting and charge-density-wave order parameters in high-temperature cuprate superconductors. Phys. Rev. B 80, 224501 (2009). doi: 10.1103/physrevb.80.224501 CrossRefADSGoogle Scholar
  95. 95.
    Phillips, J.C.: Proc. Natl. Acad. Sci. 107, 1307–1310 (2010)CrossRefADSGoogle Scholar
  96. 96.
    Gor’kov, L.P., Teitel’baum, G.B.: Spatial inhomogeneities in iron pnictide superconductors: the formation of charge stripes. Phys. Rev. B 82, 020510 (2010)CrossRefADSGoogle Scholar
  97. 97.
    Pinheiro, C.F.S., de Mello, E.V.L.: Random resistivity network calculations for cuprate superconductors with an electronic phase separation transition. Physica A Stat. Mech. Appl. 391, 1532–1539 (2012)CrossRefADSGoogle Scholar
  98. 98.
    Bianconi, G.: Superconductor-insulator transition on annealed complex networks. Phys. Rev. E 85, 061113 (2012). doi: 10.1103/physreve.85.061113 CrossRefADSGoogle Scholar
  99. 99.
    Müller, K.A.: The unique properties of superconductivity in cuprates. J. Supercond. Nov. Magn. 27, 2163–2179 (2014).  10.1007/s10948-014-2751-5 CrossRefGoogle Scholar
  100. 100.
    Poccia, N., Campi, G., Fratini, M., Ricci, A., Saini, N.L., Bianconi, A. Phys. Rev. B 84, 100504 (2011). doi: 10.1103/physrevb.84.100504 CrossRefADSGoogle Scholar
  101. 101.
    Karapetyan, H., Xia, J., Hücker, M., Gu, G.D., Tranquada, J.M., Fejer, M.M., Kapitulnik, A.: Evidence of chiral order in the charge-ordered phase of superconducting La1.875Ba0.125Cuo4 single crystals using polar Kerr-Effect measurements. Phys. Rev. Lett. 112, 047003 (2014). doi: 10.1103/physrevlett.112.047003 CrossRefADSGoogle Scholar
  102. 102.
    Saini, N.L., Lanzara, A., Bianconi, A., Oyanagi, H.: Asymmetric local displacements in the Bi2Sr2CaCu2O8+β superconductor. Eur. Phys. J. B- Condens. Matter Complex Syst. 18, 257–261 (2000). doi: 10.1007/s100510070056 CrossRefGoogle Scholar
  103. 103.
    Saini, N.L., Oyanagi, H., Molle, M., Garg, K., Kim, C., Bianconi, A.: Evidence for anisotropic atomic displacements and orbital distribution in the inhomogeneous CuO2 plane of the Bi2Sr2CaCu2O8+δ system. J. Phys. Chem Solids 65, 1439–1443 (2004). doi: 10.1016/j.jpcs.2003.12.011 CrossRefADSGoogle Scholar
  104. 104.
    Fratini, M., Poccia, N., Ricci, A., Campi, G., Burghammer, M., Aeppli, G., Bianconi, A. Nature 466, 841 (2010). doi: 10.1038/nature09260 CrossRefADSGoogle Scholar
  105. 105.
    Poccia, N., Fratini, M., Ricci, A., Campi, G., Barba, L., et al: Evolution and control of oxygen order in a cuprate superconductor. Nat. Mater. 10, 733–73 (2011)CrossRefADSGoogle Scholar
  106. 106.
    Poccia, N., Ricci, A., Bianconi, A.: Fractal structure favoring superconductivity at high temperatures in a stack of membranes near a strain quantum critical point. J. Supercond. Nov. Magn. 24(3), 1195–1200 (2011). doi: 10.1007/s10948-010-1109-x CrossRefGoogle Scholar
  107. 107.
    Ricci, A., Poccia, N., Joseph, B., Arrighetti, G., Barba, L., Plaisier, J., Campi, G., Mizuguchi, Y., Takeya, H., Takano, Y., et al.: Supercond. Sci. Technol. 24, 082002+ (2011). http://iopscience.iop.org/0953-2048/24/8/082002/ CrossRefADSGoogle Scholar
  108. 108.
    Ricci, A., Poccia, N., Campi, G., Joseph, B., Arrighetti, G., Barba, L., Reynolds, M., Burghammer, M., Takeya, H., Mizuguchi, Y., et al.: Phys. Rev. B 84, 060511 (2011). doi: 10.1103/PhysRevB.84.060511 CrossRefADSGoogle Scholar
  109. 109.
    Ricci, A., Poccia, N., Campi, G., Coneri, F., Caporale, A.S., Innocenti, D., Burghammer, M., Zimmermann, M.v., Bianconi, A.: Multiscale distribution of oxygen puddles in 1/8 doped YBa2Cu3O6.67. Sci. Rep. 3, 2383 (2013)CrossRefADSGoogle Scholar
  110. 110.
    Poccia, N., Chorro, M., Ricci, A., Xu, W., Marcelli, A., Campi, G., Bianconi, A.: Percolative superconductivity in La2CuO4.06 by lattice granularity patterns with scanning micro X-ray absorption near edge structure. Appl. Phys. Lett. 104, 221903 (2014). doi: 10.1063/1.4879286 CrossRefADSGoogle Scholar
  111. 111.
    Ricci, A., Poccia, N., Campi, G., Coneri, F., Barba, L., Arrighetti, G., Polentarutti, M., Burghammer, M., Sprung M., Zimmermann M., Bianconi, A.: Networks of superconducting nano-puddles in 1/8 doped YBa2Cu3O6.5+y controlled by thermal manipulation. New J. Phys. 16, 053030 (2014). doi: 10.1088/1367-2630/16/5/053030 CrossRefADSGoogle Scholar
  112. 112.
    Drees, Y., Li, Z.W., Ricci, A., Rotter, M., Schmidt, W., Lamago, D., Sobolev, O., Rütt, U., Gutowski, O., Sprung, M., Piovano, A., Castellan, J.P., Komarek, A.C.: Hour-glass magnetic excitations induced by nanoscopic phase separation in cobalt oxides. Nat. Commun. 5, 5731+ (2014). doi: 10.1038/ncomms6731 CrossRefADSGoogle Scholar
  113. 113.
    Emin, D.: Phys. Rev. B 49, 9157 (1994). doi: 10.1103/PhysRevB.49.9157 CrossRefADSGoogle Scholar
  114. 114.
    Emin, D.: Phys. Rev. Lett. 72, 1052 (1994)CrossRefADSGoogle Scholar
  115. 115.
    Meadley, S.L., Angell, C.A.: Water and its relatives: the stable, supercooled and particularly the stretched, regimes. In: Proceedings of the International School of Physics “Enrico Fermi” Water: Fundamentals as the Basis for Understanding the Environment and Promoting Technology Course CLXXXVII Varenna (2013), arXiv:1404.4031
  116. 116.
    Poole, P.H., Sciortino, F., Grande, T., Stanley, H.E., Angell, C.A.: Phys. Rev. Lett. 73, 1632 (1994)CrossRefADSGoogle Scholar
  117. 117.
    Innocenti, D., Ricci, A., Poccia, N., Campi, G., Fratini, M., Bianconi, A.: A model for liquid-striped liquid phase separation in liquids of anisotropic polarons. J. Supercond. Nov. Magn. 22, 529–533 (2009). doi: 10.1007%2Fs10948-009-0474-9 CrossRefGoogle Scholar
  118. 118.
    Bianconi, A., Valletta, A., Perali, A., Saini, N.L.: High Tc superconductivity in a superlattice of quantum stripes. Solid State Commun. 102, 369–374 (1997). doi: 10.1016/s0038-1098(97)00011-2 CrossRefADSGoogle Scholar
  119. 119.
    Bianconi, A.: Feshbach shape resonance in multiband superconductivity in heterostructures. J. Supercond. 18, 625–636 (2005). do: 10.1007/s10948-005-0047-5 CrossRefADSGoogle Scholar
  120. 120.
    Innocenti, D., Poccia, N., Ricci, A., Valletta, A., Caprara, S., Perali Bianconi, A.: Resonant and crossover phenomena in a multiband superconductor: tuning the chemical potential near a band edge. Phys. Rev. B 82, 184528 (2010). doi: 10.1103/PhysRevB.82.184528 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of Crystallography, CNRMonterotondo RomeItaly
  2. 2.Rome International Centre for Materials Science Superstripes RICMASSRomaItaly
  3. 3.EPFL Laboratory of Nanostructures and Novel Electronic MaterialsLausanneSwitzerland

Personalised recommendations