Presence of Pseudo-Path in the Interplane Penetration Depth of Layered YBa2Cu3Oy

  • Moses E. EmetereEmail author
Original Paper


The concept of magnetic field effect (MFE) on cuprates is not new. However, little has been discussed on the magnetic field effects on the interplane penetration depth of yttrium barium copper oxide (YBCO). The orbital magnetoresistance of the YBCO were derived and analyzed to reflect its effect on the interplane penetration of layered YBCO. Though most of the anomalies in the YBCO can be associated with the lattice fluctuations, the interplane penetration depth is dependent on the orbital anomaly which dictates the interactions of particulates. The presence of pseudo-path was discovered to exist in the interplane penetration depth of the YBCO. The pseudo-path is observed to control other vital parameters of superconductivity, e.g., vortex dynamics, particulate interactions, etc.


Pseudo-path Bloch magnetization Orbital anomalies Interactions YBCO 



The author appreciates the partial sponsorship of Covenant University.

Conflict of interests

This paper has no competing financial interests.


  1. 1.
    Anderson, P.W., Baskaran, G., Zou, Z., Hsu, T.: Resonating-valence-bond theory of phase transitions and superconductivity in La2CuO4-based compounds. Phys. Rev. Lett. 58, 2790 (1987)CrossRefADSGoogle Scholar
  2. 2.
    Bianconi, A., et al.: Determination of the local lattice distortions in the CuO2 plane of La1.85Sr0.15CuO4. Phys. Rev. Lett 76, 3412 (1996)CrossRefADSGoogle Scholar
  3. 3.
    LaForge, A.D., et al.: Interlayer electrodynamics and unconventional vortex state in YBa2Cu3Oy. Phys. Rev. B 76, 054524 (2007)CrossRefADSGoogle Scholar
  4. 4.
    Doiron-Leyraud, N., et al.: Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor. Nature (London) 447, 565 (2007)CrossRefADSGoogle Scholar
  5. 5.
    Jaudet, C., et al.: de Haas–van Alphen Oscillations in the underdoped high-temperature superconductor YBa2Cu3O6.5. Phys. Rev. Lett. 187005, 100 (2008)Google Scholar
  6. 6.
    Sebastian, S.E., et al.: A multi-component Fermi surface in the vortex state of an underdoped high-Tc superconductor. Nature (London) 454, 200 (2008)CrossRefADSGoogle Scholar
  7. 7.
    Ophir, M., et al.: Mechanics of individual isolated vortices in a cuprate superconductor. Nat. Phys. 5, 35–39 (2009)CrossRefGoogle Scholar
  8. 8.
    Prozorov, R., et al.: Measurements of the absolute value of the penetration depth in high-superconductors using a low-superconductive coating. Appl. Phys. Lett. 77, 4202 (2000)CrossRefADSGoogle Scholar
  9. 9.
    Gordon, R.T., et al.: Two-gap superconductivity seen in penetration-depth measurements of Lu2Fe3Si5 single crystals. Phys. Rev. B 78, 024514 (2000)CrossRefADSGoogle Scholar
  10. 10.
    Anlage, S.M., et al.: Electrodynamics of Nd1.85Ce0.15CuO4: comparison with Nb and YBa2Cu3O7- δ. Phys. Rev. 50, 523 (1994)CrossRefADSGoogle Scholar
  11. 11.
    Prozorov, R., et al.: Low temperature vortex phase diagram of Bi2.15Sr1.85CaCu2 O 8+δ: a magnetic penetration depth study. Physica C, 341–348 (2000)Google Scholar
  12. 12.
    Schneider, T., et al.: Finite size effect in Bi2Sr2CaCu2O8 +δ and YBa2Cu3O6.7 probed by the in-plane and out of plane penetration depths, arXiv:cond-mat/0309064v1 (2003)
  13. 13.
    Uchida, S., Tamasaku, K.: Josephson plasma in the c-axis optical spectrum of high- T c superconductors. Physica C293, 1 (1997)ADSGoogle Scholar
  14. 14.
    Tsvetov, A.A., et al.: Global and local measures of the intrinsic Josephson coupling in Tl2Ba2CuO6 as a test of the interlayer tunneling model. Nature 395, 360 (1998)CrossRefADSGoogle Scholar
  15. 15.
    Dordevic, S.V., et al.: Global trends in the interplane penetration depth of layered superconductors. Phy. Rev. B 65, 134511 (2002)CrossRefADSGoogle Scholar
  16. 16.
    Singley, E.J., et al.: Electron dynamics in Nd1.85Ce0.15CuO4 +δ: evidence for the pseudogap state and unconventional c-axis response. Phy. Rev. B 64, 224503 (2001)CrossRefADSGoogle Scholar
  17. 17.
    Basov, D.N., et al.: Unconventional energetics of the pseudogap state and superconducting state in high-Tc cuprates. Phys. Rev. B 63, 134514 (2001)CrossRefADSGoogle Scholar
  18. 18.
    Kim, E.H.: Penetration depth the conductivity sum rule for a model with incoherent c-axis coupling. Phys. Rev. B 58, 2452 (1998)CrossRefADSGoogle Scholar
  19. 19.
    Sarma, S.Das, Hwang, E.H.: c-axis optical reflectivity of layered cuprate superconductors. Phys. Rev. Lett. 80, 4752 (1998)Google Scholar
  20. 20.
    Wen, H.H., et al.: Strictly in-plane vortex-like excitations in pseudogap region of underdoped La2−xSrxCuO4 single crystals, arXiv: cond-mat/0301367v2 [cond-mat.supr-con] (2003)
  21. 21.
    Basov, D.N., Timusk, T., Dabrowski, B., Jorgensen, J.D.: c-axis response of YBa2Cu4O8: a pseudogap and possibility of Josephson coupling of CuO2 planes. Phys. Rev. B 50, 3511 (1994)CrossRefADSGoogle Scholar
  22. 22.
    Uno, U.E., Emetere, M.E.: Analysis of the high temperature superconducting magnetic penetration depth using the Bloch NMR equations. Global Eng. Tech. Rev. 2, 1–14 (2012)Google Scholar
  23. 23.
    Emetere, M.E.: Mathematical modelling of Bloch NMR to explain the Rashba Energy Features. World J. Cond. Mat. Phys. 3 (1), 87–94 (2013)ADSGoogle Scholar
  24. 24.
    Emetere, M.E.: Mathematical modelling of Bloch NMR to solve the Schrodinger time dependent equation. Afr. Rev. Phys. 8 (10), 65–68 (2013)Google Scholar
  25. 25.
    Yarmchuk, E.J., Gordon, M.J.V., Packard, R.E.: Observation of stationary vortex arrays in rotating superfluid helium. Phys. Rev. Lett. 43, 214 (1979)CrossRefADSGoogle Scholar
  26. 26.
    Low, U., Emery, V.J., Fabricius, K., Kivelson, S.A.: Study of an Ising model with competing long- and short-range interactions. Phys. Rev. Lett. 72, 1918 (1994)CrossRefADSGoogle Scholar
  27. 27.
    Takigawa, M., et al.: Cu and O NMR studies of the magnetic properties of YBa2Cu3O6.63 (Tc =62 K). Phys. Rev. B 43, 247 (1991)CrossRefADSGoogle Scholar
  28. 28.
    LeBoeuf, D., et al.: Lifshitz critical point in the cuprate superconductor YBa2Cu3Oy from high-field Hall effect measurements. Phys. Rev. B 83, 054506 (2011)CrossRefADSGoogle Scholar
  29. 29.
    Kim, M.S., et al.: Reflection of a two-gap nature in penetration-depth measurements of MgB2 film. Phys. Rev. B 66, 064511 (2002)CrossRefADSGoogle Scholar
  30. 30.
    Manzano, F., et al.: Exponential temperature dependence of the penetration depth in single crystal MgB2. Phys. Rev. Lett. 88, 047002 (2002)CrossRefADSGoogle Scholar
  31. 31.
    Scalapino, D.J.: d-wave pairing in the cuprates. Phys. Rep. 250, 329–365 (1995)CrossRefADSGoogle Scholar
  32. 32.
    de Lima, O.F., et al.: Irreversibility lines and anomalous Meissner effect in Ba(Fe1−xCox)2As2 superconducting crystals. Phys. Procedia 36, 1661–1666 (2012)CrossRefADSGoogle Scholar
  33. 33.
    Thompson, D.J., et al.: Observation of paramagnetic Meissner effect in niobium disks. Phys. Rev. Lett. 75, 529–532 (1995)CrossRefADSGoogle Scholar
  34. 34.
    Kostic, P., et al.: Paramagnetic Meissner effect in Nb. Phys. Rev. B 53, 791–801 (1996)CrossRefADSGoogle Scholar
  35. 35.
    Emetere, M.E.: Quantum information technology based on magnetic excitation of single spin dynamics. Industrial Engineering Letters 3 (5), 33–36 (2013)Google Scholar
  36. 36.
    Emetere, M.E.: Mathematical modeling of Bloch NMR to explain the Rashba Energy Features. Scientific Research: World Journal of Condensed Matter Physics, 2013 3 (1), 87–94 (2013)ADSGoogle Scholar
  37. 37.
    Emetere, M.E., Bakeko, M.M.: Determination of characteristic relaxation times and their significance in copper oxide thin film. Journal of the theoretical Physics and Cryptography 4 (1), 10–4 (2013)Google Scholar
  38. 38.
    Emetere, M.E., Uno, U.E., Isah, K.: A remodeled stretched exponential–decay formula for complex systems. Research and Reviews: Journal of Engineering and Technology 3 (2), 4–12 (2014)Google Scholar
  39. 39.
    Emetere, M.E.: Mathematical modeling of Bloch NMR to solve a three dimensional-Schrodinger time dependent equation. Appl. Math. Sci. 8 (56), 2753–2762 (2014)Google Scholar
  40. 40.
    Emetere, M.E.: Characteristic significance of magnetic relaxations on copper oxide thin film using the Bloch NMR. Surf. Rev. Lett. 21 (5), 1450075 (2014). doi: 10.1142/S0218625X14500759 CrossRefGoogle Scholar
  41. 41.
    Emetere,M.E.: Effects of Tunable Bloch Inspired Spin Orbit Interaction in the Electronic State Of Sr2RuO4. J. Supercond. Nov. Magn. 27(10), 9(2014). doi: 10.1007/s10948-014-2848-x

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of PhysicsCovenant UniversityCanaan landOta Nigeria

Personalised recommendations