Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 28, Issue 1, pp 231–239 | Cite as

Effects of Tunable Bloch-Inspired Spin-Orbit Interaction in the Electronic State of Sr2RuO4

  • Moses E. EmetereEmail author
Original Paper

Abstract

The conflicting experimental and theoretical results on the properties of Sr2RuO4 are evidences of its complexities. The Bloch catalytic factor was introduced to investigate the varying interactions between the direction of electron spin and the orbital motion for different ‘d’ elements. The Bloch-inspired spin-orbit interaction (SOI) was designed and tested under the tunable longitudinal and transverse magnetizations. Some of the results correspond to recent experiments. The prevailing SOI in each case is dependent on the splitting of the 4d states.

Keywords

Superconductivity Spin interaction orbit Bloch 

Notes

Acknowledgments

The author appreciates the enabling environment provided by the host institution. The author appreciates the ceaseless support of Mrs. J. Emetere.

References

  1. 1.
    Zutic, I., Mazin, I.: Phys. Rev. Lett. 95, 217004 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Neumeier, J.J., Hundley, M.F., Smith, M.G., Thompson, J.D., Allgeier, C., Xie, H., Yelon, W., Kim, J.S.: Phys. Rev. B 50, 17910 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    Friedt, O., Braden, M., Andre, G., Adelmann, P., Nakatsudji, S., Maeno, Y.: Phys. Rev. B 63, 174432 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Ikeda, S.I., Shirakawa, N., Bando, H., Ootuka, Y.: J. Phys. Soc. Jpn. 69, 3162 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    Rice, T.M., Sigrist, M.: J. Phys.: Condens. Matter 7, L643 (1995)ADSGoogle Scholar
  6. 6.
    Mazin, I.I., Singh, D.J.: Phys. Rev. Lett. 82, 4234 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Anderson, B.M., Juzeliunas, G., Galitski, V.M., Spielman, I.B.: Phys.Rev. Lett. 108, 235301 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Grundler, D.: Phys. Rev. Lett. 84, 6074 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    Kohda, M., Bergsten, T., Nitta, J.: J. Phys. Soc. Jpn. 77, 031008 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Juzeliunas, G., Ruseckas, J., Lindberg, M., Santos, L., Ohberg, P.: Phys. Rev. A 77, 011802(R) (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Juzeliunas, G., Ruseckas, J., Dalibard, J.: Phys. Rev. A 81, 053403 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Matsuura, H., Miyake, K: arXiv:1306.1880v1 [cond-mat.str-el] (2013)
  13. 13.
    Calder, S., Garlea, V.O., McMorrow, D.F., Lumsden, M.D., Stone, M.B., Lang, J.C., Kim, J.-W., Schlueter, J.A., Shi, Y.G., Yamaura, K., Sun, Y.S., Tsujimoto, Y., Christianson, A.D.: Phys. Rev. Lett. 108, 257209 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Goncç Alves, P., Jara, M., Sethuraman, S: arXiv:1210.0017v1 [math.PR] (2012)
  15. 15.
    Stano, P.: Controlling electron quantum dot qubits by spin-orbit interactions. PhD., dissertation submitted to Universität Regensburg (2007)Google Scholar
  16. 16.
    Ishii, F., Kotaka, H., Onishim, T: arXiv:1401.6515v1 [cond-mat.mtrl-sci] (2014)
  17. 17.
    Han, W., Zhang, S., Liu, W.-M.: arXiv:1211.2097v3 [cond-mat.quant-gas] (2013)
  18. 18.
    Obata, K., Tatara, G.: arXiv:0804.0458v1 [cond-mat.mes-hall] (2008)
  19. 19.
    Abragam, A.: Principles of Nuclear Magnetic Resonance. Clarendon Press, Oxford (1991)Google Scholar
  20. 20.
    Uno, U. E., Emetere, M.E.: Global Eng. Technol. Rev. 2, 14–21 (2012)Google Scholar
  21. 21.
    Emetere, M. E.: Afr. Rev. Phys. 8, 65–68 (2013)Google Scholar
  22. 22.
    Emetere, M. E.: Appl. Math. Sci. 8, 2753–2762 (2014)Google Scholar
  23. 23.
    Emetere, M.E.: World J. Cond. Matter Phys. 3, 87–94 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Oguchi, T.: Phys. Rev. B 51, 1385 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    Mazin, I.I., Singh, D.: Phys. Rev. Lett 79, 733 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    Nitta, J., Akazaki, T., Takayanagi, H., Enoki, T.: Phys. Rev. Lett. 78, 1335 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    Giuliani, G.: Eur. J. Phys. 31, 871 (2010)CrossRefGoogle Scholar
  28. 28.
    Semon, M.D., Taylor, J.R.: Am. J. Phys. 64, 1361 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    Konopinski, E.J.: Am. J. Phys. 46, 499 (1978)ADSCrossRefMathSciNetGoogle Scholar
  30. 30.
    Grundler, D.: Phys. Rev. Lett. 84, 6074 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    Kim, B.J., Ohsumi, H., Komesu, T., Sakai, S., Morita, T., Takagi, H., Arima, T.: Science 323, 1329 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    Veenstra, C.N., Zhu, Z.-H., Raichle, M., Ludbrook, B.M., Nicolaou, A., Slomski, B., Landolt, G., Kittaka, S., Maeno, Y., Dil, J.H., Elfimov, I.S., Haverkort, M.W., Damascelli, A.: arXiv:1303.5444v1 [cond-mat.supr-con] (2013)
  33. 33.
    Maeno, Y., et al.: Nature 372, 532 (1994)ADSCrossRefGoogle Scholar
  34. 34.
    Singh, D.: Phys. Rev. B 52, 1358 (1995)ADSCrossRefGoogle Scholar
  35. 35.
    Ng, K.K., Sigrist, M.: Europhys. Lett. 49, 473 (2000)ADSCrossRefGoogle Scholar
  36. 36.
    Eremin, I., Manske, D., Joas, C., Bennemann, K.H.: Europhys. Lett. 58, 871 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    Haverkort, M.W., Elfimov, I.S., Tjeng, L.H., Sawatzky, G.A., Damascelli, A.: Phys. Rev. Lett. 101, 026406 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    Hill, J.P., Sternlieb, B.J., Gibbs, D., Detlefs, C., Goldman, A.I., Stassis, C., Canfield, P.C., Cho, B.K.: Phys. Rev. B 53, 3487 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    Uno, U.E., Emetere, M.E.: J. Asian Sci. Res. 2(1), 14–24 (2011)Google Scholar
  40. 40.
    Emetere, M.E.: Ind. Eng. Lett. 3(5), 33–36 (2013)Google Scholar
  41. 41.
    Emetere, M.E., Bakeko, M.M.: J. Theor. Phys. Crypt. 4(1), 1–4 (2013)Google Scholar
  42. 42.
    Emetere, M.E., Uno, U.E., Isah, K.: J. Eng. Technol. 3(2), 4–12 (2014)Google Scholar
  43. 43.
    Emetere, M.E.: Surf. Rev. Lett. 21(5), 1450075 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of PhysicsCovenant UniversityOtaNigeria

Personalised recommendations