Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 28, Issue 3, pp 1087–1091 | Cite as

Transient Magnetic Tunneling Mediated by a Molecular Bridge

  • A. Kalvová
  • V. Špička
  • B. Velický
Original Paper

Abstract

This paper extends our recent theoretical study Kalvová et al. (J. Supercon. and Novel Mag. 26, 773 2013) of transient currents through molecular bridges to magnetic tunneling. We calculate the excess magnetization on a molecular bridge shunting the magnetic junction. The system is represented by two ferromagnetic electrodes bridged by a molecular size island with a few discrete electronic levels and a local Hubbard type correlation. The island is linked to the electrodes by tunneling junctions. One of the junctions is permanent, the coupling strength of the other one is assumed to undergo rapid changes modulating the connectivity of the system. The sudden switching events give rise to transient magnetic currents resulting in changes of magnetization at the island. They vary with the constant galvanic bias between the electrodes. Depending on the time scale of the switching series, the transients are dominated by the initial quantum correlations, or reach the kinetic stage controlled by a simple relaxation mechanism. We employ the nonequilibrium Green’s functions. The finite-time correlated initial conditions are taken into account using the partitioning-in-time method we developed previously Velický et al. (Phys. Rev. B 81, 235116 2010). The numerical solution is obtained solving the real-time Dy-son equation in the integro-differential form self-consistently. For long time asymptotic, a generalized master equation is matched to the initial stage solution.

Keywords

Non-equilibrium Initial conditions Transient currents Molecular islands 

Notes

Acknowledgments

The authors acknowledge financial support from the Czech Science Foundation (P204/12/0897).

References

  1. 1.
    Kalvová, A., Špička, V., Velický, B.: J. Supercon. Novel Mag. 26, 773 (2013)CrossRefGoogle Scholar
  2. 2.
    Galperin, M., Ratner, M.A., Nitzan, A.: J. Phys. Cond. Matt. 19, 103201 (2007)CrossRefADSGoogle Scholar
  3. 3.
    Schmidt, T.L., Werner, P., Muhlbacher, L., Komnik, A.: Phys. Rev. B 78, 235110 (2008)CrossRefADSGoogle Scholar
  4. 4.
    Meir, Y., Wingreen, N.S.: Phys. Rev. Lett. 68, 2512 (1992)CrossRefADSGoogle Scholar
  5. 5.
    Jauho, A.P., Wingreen, N.S., Meir, Y.: Phys. Rev. B 50, 5528 (1994)CrossRefADSGoogle Scholar
  6. 6.
    Špička, V., Kalvová, A., Velický, B.: Phys. Scr. T 151, 014037 (2012)ADSGoogle Scholar
  7. 7.
    Kalvová, A., Špička, V., Velický, B.: Non-equilibrium statistical physics today. AIP Conf. Proc. 1332, 223 (2011)CrossRefADSGoogle Scholar
  8. 8.
    Kita, T.: Prog. Theor. Phys. 123, 581 (2010)CrossRefADSzbMATHGoogle Scholar
  9. 9.
    Velický, B., Kalvová, A., Špička, V.: Phys. Rev. B 81, 235116 (2010)CrossRefADSGoogle Scholar
  10. 10.
    Newns, D.M.: Phys. Rev. 178, 1123 (1969)CrossRefADSGoogle Scholar
  11. 11.
    Grimley, T.B.: J. Vac. Sci. Technol 8, 31 (1971)CrossRefADSGoogle Scholar
  12. 12.
    Kirkpatrick, S., Velický, B., Ehrenreich, H.: Phys. Rev. B 1, 3250 (1970)CrossRefADSGoogle Scholar
  13. 13.
    Velický, B., Kalvová, A., Špička, V.: Phys. Rev. B 75, 195125 (2007)CrossRefADSGoogle Scholar
  14. 14.
    Latini, S., Perfetto, E., Uimonen, A.-M., van Leeuwen, R., Stefanucci, G.: Phys. Rev. B 89, 075306 (2014)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute of Physics AS CRPrahaCzech Republic
  2. 2.Department of Condensed Matter PhysicsCharles UniversityPrahaCzech Republic

Personalised recommendations