Journal of Superconductivity and Novel Magnetism

, Volume 28, Issue 2, pp 469–473 | Cite as

AC Quantum Interference Effects in Nanopatterned Nb Microstrips

Original Paper

Abstract

The mixed-state dc voltage response of nanopatterned Nb microstrips is investigated by combined microwave (0.5 MHz—1 GHz) and dc electrical resistance measurements. The nanopatterns are arrays of symmetric grooves on the film surface fabricated by focused ion beam milling. They provide a pinning potential of the washboard type for the vortex motion. When subject to a microwave stimulus, the dc current–dc voltage curves of the microstrips exhibit Shapiro steps. The steps occur at voltages V=nV0=nNfΦ0, where n is an integer, N is the number of vortex rows between the voltage leads, f is the microwave frequency, and Φ0 is the magnetic flux quantum. These steps arise as an interference effect when one or a multiple of the hopping period of the coherently moving Abrikosov vortices coincides with the period of the ac drive. When tuning the field value away from the matching field, the steps disappear due to lacking coherence in the motion of the Abrikosov vortex lattice. Dependencies of the dc critical (depinning) current on the microwave power and frequency are reported.

Keywords

AC quantum interference effects Nonlinear vortex dynamics Washboard pinning potential Combined microwave and dc electrical resistance measurements 

Notes

Acknowledgements

The author thanks M. Huth for granting access to all the instrumentation involved and R. Sachser for support with nanopatterning and in automating the data acquisition. Discussions with V. A. Shklovskij are gratefully acknowledged. Financial support through the SFB TR 49 project of the German Research Foundation (DFG), the Goethe University funding program “Nachwuchswissenschaftler im Fokus,” and the Vereinigung von Freunden und Fördern of the Goethe University is acknowledged. This work has been done in the framework of the NanoSC-COST Action MP1201.

References

  1. 1.
    Shapiro, S.: Phys. Rev. Lett. 11, 80 (1963). doi:10.1103/PhysRevLett.11.80 CrossRefADSGoogle Scholar
  2. 2.
    Dayem, A. H., Wiegand, J. J.: Phys. Rev. 155, 419 (1967). doi:10.1103/PhysRev.155.419 CrossRefADSGoogle Scholar
  3. 3.
    Matsuura, T., Inagaki, K., Tanda, S.: Phys. Rev. B 79, 014304 (2009). doi:10.1103/PhysRevB.79.014304 CrossRefADSGoogle Scholar
  4. 4.
    Sivakov, A. G., Glukhov, A. M., Omelyanchouk, A. N., Koval, Y., Müller, P., Ustinov, A. V.: Phys. Rev. Lett. 91, 267001 (2003). doi:10.1103/PhysRevLett.91.267001 CrossRefADSGoogle Scholar
  5. 5.
    Nawaz, S., Arpaia, R., Lombardi, F., Bauch, T.: Phys. Rev. Lett. 110, 167004 (2013). doi:10.1103/PhysRevLett.110.167004 CrossRefADSGoogle Scholar
  6. 6.
    Fiory, A. T.: Phys. Rev. Lett. 27, 501 (1971). doi:10.1103/PhysRevLett.27.501 CrossRefADSGoogle Scholar
  7. 7.
    Martinoli, P., Daldini, O., Leemann, C.: E. Stocker, Solid State Commun 17, 205 (1975)CrossRefADSGoogle Scholar
  8. 8.
    Fiory, A. T.: Phys. Rev. B 7, 1881 (1973). doi:10.1103/PhysRevB.7.1881 CrossRefADSGoogle Scholar
  9. 9.
    Van Look, L., Rosseel, E., Van Bael, M. J., Temst, K., Moshchalkov, V. V., Bruynseraede, Y.: Phys. Rev. B 60, R6998 (1999). doi:10.1103/PhysRevB.60.R6998 CrossRefADSGoogle Scholar
  10. 10.
    Kokubo, N., Besseling, R., Vinokur, V. M., Kes, P. H.: Phys. Rev. Lett. 88, 247004 (2002). doi:10.1103/PhysRevLett.88.247004 CrossRefADSGoogle Scholar
  11. 11.
    Van de Vondel, J., Silhanek, A. V., Metlushko, V., Vavassori, P., Ilic, B., Moshchalkov, V. V.: Phys. Rev. B 79, 054527 (2009). doi:10.1103/PhysRevB.79.054527 CrossRefADSGoogle Scholar
  12. 12.
    Shklovskij, V. A., Dobrovolskiy, O. V.: Phys. Rev. B 78, 104526 (2008). doi:10.1103/PhysRevB.78.104526 CrossRefADSGoogle Scholar
  13. 13.
    Shklovskij, V. A., Dobrovolskiy, O. V.: Phys. Rev. B 84, 054515 (2011). doi:10.1103/PhysRevB.84.054515 CrossRefADSGoogle Scholar
  14. 14.
    Shklovskij, V. A., Sosedkin, V. V., Dobrovolskiy, O.V.: Phys. J. Cond. Matt. 26 (2), 025703 (2014) [ http://stacks.iop.org/0953-8984/26/i=2/a=025703]CrossRefGoogle Scholar
  15. 15.
    Dobrovolskiy, O. V., Franke, J., Huth, M.: submitted (2014)Google Scholar
  16. 16.
    Tinkham, M.: Intoduction to Superconductivity (Mineola, New York, 2004)Google Scholar
  17. 17.
    Bardeen, J., Stephen, M. J.: Phys. Rev. 140, A1197 (1965). doi:10.1103/PhysRev.140.A1197 CrossRefADSGoogle Scholar
  18. 18.
    Larkin, A. I., Ovchinnikov, Y. N., Exp, J.: Theor. Phys. 41, 960 (1975) [ http://www.jetp.ac.ru/ cgi-bin/index/e/41/5/p960?a=list]ADSGoogle Scholar
  19. 19.
    Dobrovolskiy, O. V., Begun, E., Huth, M., Shklovskij, V. A.: New J. Phys. 14 (11), 113027 (2012) [ http://stacks.iop.org/1367-2630/14/i=11/a=113027]CrossRefADSGoogle Scholar
  20. 20.
    Perez de Lara, D., Dinis, L., Gonzalez, E. M., Parrondo, J. M. R., Anguita, J. V., Vicent, J. L.: J. Phys.: Condens. Matter 21 (25), 254204 (2009)ADSGoogle Scholar
  21. 21.
    Jin, B. B., Zhu, B. Y., Wördenweber, R., de Souza Silva, C. C., Wu, P. H., Moshchalkov, V. V.: Phys. Rev. B 81, 174505 (2010). doi:10.1103/PhysRevB.81.174505 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Physikalisches InstitutGoethe UniversityFrankfurt am MainGermany
  2. 2.Physics DepartmentV. Karazin National UniversityKharkivUkraine

Personalised recommendations