Electron Transport Through Thiolized Gold Nanoparticles in Single-Electron Transistor

  • Y. S. Gerasimov
  • V. V. Shorokhov
  • O. V. Snigirev
Original Paper


We propose an analytical parametric model for defining energy spectra of nanoparticles with a number of atoms of up to 3,300. This allows us to perform Monte-Carlo simulations for single-electron transistor (SET) based on gold nanoparticles with a size of up to 5.2 nm at temperatures from 0.1 to 300 K. At the first step, energy spectra were calculated for isomers of gold nanoparticles, consisting of up to 33 gold atoms using methods of quantum mechanics: density functional theory (DFT) with LANL2DZ basis set for “geometry” optimization; unrestricted Hartree–Fock method (UHF)x with SBKJC basis set to evaluate energy parameters of nanoobjects, which include gold atoms with many electrons. It was found that the general structure of the energy spectra changes unsignificantly if the number of atoms is greater than 27. Moreover, the size of the energy gap and the position of energy levels in it are linear functions of one parameter—the total electric charge of the nanoparticle. These features of energy spectra allowed us to perform calculations of the transport characteristics for a real SET using gold nanoparticle as a central conducting island.


Single-electron transistor Molecular electronics Gold nanoparticles Electronic nanodevices Discrete energy spectra Stability diagram 


  1. 1.
    Likharev, K.: Proc. IEEE 87, 606 (1999)CrossRefGoogle Scholar
  2. 2.
    Likharev, K.K., Strukov, D.B.: CMOL: devices, circuits, and architectures. In: Introduction to Molecular Electronics, p. 2005. Springer, BerlinGoogle Scholar
  3. 3.
    Dagesyan, S., Soldatov, E., Stepanov, A.: Bulletin of the russian academy of sciences. Physics 78 (2), 139 (2014)Google Scholar
  4. 4.
    Gubin, S., Gulayev, Y., Khomutov, G., Kislov, V., Kolesov, V., Soldatov, E., Sulaimankulov, K., Trifonov, A.: Nanotechnology 13, 185 (2002)CrossRefADSGoogle Scholar
  5. 5.
    Kano, S., Azuma, Y., Maeda, K., Tanaka, D., Sakamoto, M., Teranishi, T., Smith, L.W., Smith, C.G., Majima, Y.: ACS Nano 6 (11), 9972 (2012)CrossRefGoogle Scholar
  6. 6.
    Maeda, K., Okabayashi, N., Kano, S., Takeshita, S., Tanaka, D., Sakamoto, M., Teranishi, T., Majima, Y.: ACS Nano 6 (3), 2798 (2012)CrossRefGoogle Scholar
  7. 7.
    Khondaker, S.I., Luo, K., Yao, Z.: Nanotechnology 21 (9), 095204 (2010)CrossRefADSGoogle Scholar
  8. 8.
    Kuemmeth, F., Bolotin, K.I., Shi, S.F., Ralph, D.C.: Nano. Lett. 8 (12), 4506 (2008)CrossRefADSGoogle Scholar
  9. 9.
    Van Alsenoy, C., Yu, C.H., Peeters, A., Martin, J.M.L., Schoer, L.: J. Phys. Chem. A 102 (12), 2246 (1998)CrossRefGoogle Scholar
  10. 10.
    Gerasimov, Y.S., Shorokhov, V.V., Soldatov, E.S., Snigirev, O.V.: Proc. SPIE 7521, 75210U (2009)CrossRefADSGoogle Scholar
  11. 11.
    Gerasimov, Y., Shorokhov, V., Maresov, A., Soldatov, E., Snigirev, O.: Journal of Radio Electronics 2 (2) (2013)Google Scholar
  12. 12.
    Granovsky, A.A.: Firefly version 7.1.g.
  13. 13.
    Stevens, W.J., Basch, H., Krauss, M.: J. Chem. Phys. 81 (12), 6026 (1984)CrossRefADSGoogle Scholar
  14. 14.
    Gerasimov, Y.S., Shorokhov, V.V., Soldatov, E.S., Snigirev, O.V.: Proc. SPIE, International Conference Micro- and Nano-Electronics 2012. 8700, 870015 (2013)CrossRefGoogle Scholar
  15. 15.
    Shorokhov, V., Soldatov, E., Elenskiy, V.: Micro- and Nanoelectronics 2007. 7025(1), 70250N (2008)Google Scholar
  16. 16.
    Gubin, S.: Himiya klasterov (Moscow: Nauka) (1987)Google Scholar
  17. 17.
    Chaki, N.K., Singh, P., Dharmadhikari, C.V., Vijayamohanan, K.P.: Langmuir 20 (23), 10208 (2004). PMID: 15518515CrossRefGoogle Scholar
  18. 18.
    Zhang, X.A., Chi, Y.Q., Fang, J.Y., Zhong, H.Q., Chang, S.L., Fang, L., Qin, S.Q.: Phys. Lett. A 374 (48), 4880 (2010)CrossRefADSGoogle Scholar
  19. 19.
    Landau, L., Livshic, E.: 3rd edn. Teoreticheskaya fizika. Kvantovaya mekhanika (nerelyativistskaya teoriya), vol. 3. Moscow: “Nauka” (1989)Google Scholar
  20. 20.
    Rautian, S.G., Yatsenko, A.S.: Phys. Usp. 42 (2), 205 (1999)CrossRefADSGoogle Scholar
  21. 21.
    Okabayashi, N., Maeda, K., Muraki, T., Tanaka, D., Sakamoto, M., Teranishi, T., Majima, Y.: Appl. Phys. Lett. 100 (3), 033101 (2012)CrossRefADSGoogle Scholar
  22. 22.
    Presnov, D., Shorokhov, V., Amitonov, S., Trifonov, A., Krupenin, V.: Abstracts of the 8-th General Meeting of Asian Consortium on Comutation Material Science. IMR, Tohoku University, Japan (2013)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Y. S. Gerasimov
    • 2
  • V. V. Shorokhov
    • 1
  • O. V. Snigirev
    • 1
  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia
  2. 2.NRC Kurchatov InstituteMoscowRussia

Personalised recommendations