Journal of Superconductivity and Novel Magnetism

, Volume 27, Issue 10, pp 2371–2377 | Cite as

Correlation Between Structure and Ferromagnetism in Cobalt-Doped CdSe Nanorods

  • Jaspal Singh
  • N. K. Verma
Original Paper


The present study deals with the investigation on structural and magnetic properties of pure and Co-doped CdSe nanorods synthesized by solvothermal route. The effects of Co-doping on structural, optical, and magnetic properties of nanorods have been explored using X-ray diffraction (XRD), transmission electron microscopy (TEM), High-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), Raman spectroscopy, energy dispersive spectroscopy (EDS), diffuse reflectance spectroscopy, electron spin resonance (ESR), and vibrating sample magnetometer (VSM), at room temperature. TEM images show that the synthesized nanorods having length in range of 80–150 nm and diameter of 10–20 nm. No ferromagnetic resonance signal has been observed in ESR spectra, indicating the absence of exchange interactions in pure and doped nanorods. The lattice contraction, increase in band gap, and ferromagnetic behavior have been observed with Co-doping concentration up to 5 %. However, at 10 % Co-doping concentration, reverse trend in above properties has been observed. The study reveals that there is a strong correlation between structural and magnetic properties of Co-doped CdSe nanorods.


Ferromagnetism DMS Nanorods Doping 



This research work was supported by funding from the Defense Research & Development Organization (DRDO), India (vide sanction letter no. ERIP/ER/0903766/M/01/1191). The authors also gratefully acknowledge the AIRF, JNU, Delhi, for providing the TEM facility.

Supplementary material

10948_2014_2603_MOESM1_ESM.pdf (150 kb)
(PDF 149 KB)


  1. 1.
    Datta, S., Das, B.: Appl. Phys. Lett. 56, 665 (1990)CrossRefADSGoogle Scholar
  2. 2.
    Binasch, G., Grünberg, P., Saurenbach, F., Zinn, W.: Phys. Rev. B 39, 4828–4830 (1989)CrossRefADSGoogle Scholar
  3. 3.
    Ohno, H.: Science 281, 951–956 (1998)CrossRefADSGoogle Scholar
  4. 4.
    Ohno, Y., Young, D.K., Beschoten, B.A., Matsukura, F., Ohno, H., Awschalom, D.D.: Nature 402, 790–792 (1999)CrossRefADSGoogle Scholar
  5. 5.
    Wilamowski, Z., Werpachowska, A.M.: Mater. Sci.-Poland 24, 1–5 (2006)Google Scholar
  6. 6.
    Liu, C., Yun, F., Morkoc, H.: J. Mater. Sci: Mater. Electron. 16, 555–597 (2005)Google Scholar
  7. 7.
    Prellier, W., Fouchet, A., Mercey, B.: J. Phys: Condens. Matter. 15, R1583–R1601 (2003)ADSGoogle Scholar
  8. 8.
    Sato, K., KatayamaYoshida, H.: Phys. Status Solidi B 229, 673–680 (2002)CrossRefADSGoogle Scholar
  9. 9.
    Bogle, K.A., Ghosh, S., Dhole, S.D., Bhoraskar, V.N., Fu, L.F., Chi, M.F., Browning, N.D., Kundaliya, D., Das, G.P., Ogale, S.B.: Chem. Mater 20, 440–446 (2007)CrossRefGoogle Scholar
  10. 10.
    Singh, J., Verma, N.K.: J. Superconduct. Nov. Magn. 25, 2425–2430 (2012)CrossRefGoogle Scholar
  11. 11.
    Dietl, T., Ohno, H.: MRS Bull.-Mater Res. Soc. 28, 714–719 (2003)CrossRefGoogle Scholar
  12. 12.
    Belhadji, B., Bergqvist, L., Zeller, R., Dederichs, P.H., Sato, K., Katayama-Yoshida, H.: J. Phys: Condens. Matt. 19, 436227 (2007)ADSGoogle Scholar
  13. 13.
    Dietl, T.: Nat. Mater. 9, 965–974 (2010)CrossRefADSGoogle Scholar
  14. 14.
    Pal, B., Giri, P.K.: J. Nanosci. Nanotechno. 11, 9167–9174 (2011)CrossRefGoogle Scholar
  15. 15.
    Biegger, E., Staheli, L., Fonin, M., Rudiger, U., Dedkov, Y.S.: J. Appl. Phys. 101, 103912 (2007)CrossRefADSGoogle Scholar
  16. 16.
    Hays, J., Punnoose, A., Baldner, R., Engelhard, M.H., Peloquin, J., Reddy, K.M.: Phys. Rev. B 72, 075203 (2005)CrossRefADSGoogle Scholar
  17. 17.
    Thurber, A., Reddy, K.M., Shutthanandan, V., Engelhard, M.H., Wang, C., Hays, J., Punnoose, A.: Phys. Rev. B 76, 165–206 (2007)CrossRefGoogle Scholar
  18. 18.
    Chess, J., Alanko, G., Tenne, D.A., Hanna, C.B., Punnoose, A.: J. Appl. Phys. 113, 17C302–17C302 (2013)CrossRefGoogle Scholar
  19. 19.
    Van Komen, C., Thurber, A., Reddy, K.M., Hays, J., Punnoose, A.: J. Appl. Phys. 103, 07D141–07D141 (2008)CrossRefGoogle Scholar
  20. 20.
    Baoyuan, W., Zhang, J., Hu, Y., Wang, S., Liu, R., He, C., Wang, X., Wang, H.: Int. J. Electrochem. Sci. 8, 7175–7186 (2013)Google Scholar
  21. 21.
    Li, Z., Du, A. J., Sun, Q., Aljada, M., Cheng, L. N., Riley, M. J., Zhu, Z.H., Cheng, Z.X., Wang, X.L., Hall, J., Krausz, E., Qian, S.Z., Smith, S.C., Lu, G. Q. M.: Chem. Comm. 47, 11894–11896 (2011)CrossRefGoogle Scholar
  22. 22.
    Li, I.F., Yeh, C.S.: J. Mater. Chem. 20, 2079–2081 (2010)CrossRefGoogle Scholar
  23. 23.
    Seehra, M.S., Dutta, P., Neeleshwar, S., Chen, Y.Y., Chen, C.L., Chou, S.W., Chen, C.C., Dong, C.L., Chang, C. L.: Adv. Mater. 20, 1656–1660 (2008)CrossRefGoogle Scholar
  24. 24.
    Hanif, K.M., Meulenberg, R.W., Strouse, G.F.: J. Am. Chem. Soc. 124, 11495–11502 (2002)CrossRefGoogle Scholar
  25. 25.
    Singh, J., Verma, N.K.: Mater. Sci. 37, 1–7 (2014)MathSciNetGoogle Scholar
  26. 26.
    Cullity, B.D., Stock, S.R.: Elements of X-ray Diffraction. Prentice Hall, New Jersey (2001)Google Scholar
  27. 27.
    Fouchet, A., Prellier, W., Padhan, P., Simon, C., Mercey, B., Kulkarni, V.N., Venkatesan, T.: J. Appl. Phys. 95, 7187 (2004)CrossRefADSGoogle Scholar
  28. 28.
    Kimura, H., Fukumura, T., Kawasaki, M., Inaba, K., Hasegawa, T., Koinuma, H.: Appl. Phys. Lett. 80, 94–96 (2002)CrossRefADSGoogle Scholar
  29. 29.
    Kortüm, G.: Reflectance Spectroscopy: Principles, Methods, Applications. Springer, New York (1969)CrossRefGoogle Scholar
  30. 30.
    Liu, Y., Qiu, H.Y., Xu, Y., Wu, D., Li, M.J., Jiang, J.X., Lai, G.Q.: J. Nanopart. Res. 9, 745–752 (2007)CrossRefGoogle Scholar
  31. 31.
    Zhang, J.Y., Wang, X.Y., Xiao, M., Qu, L., Peng, X.: Appl. Phys. Lett. 81, 2076–2078 (2002)CrossRefADSGoogle Scholar
  32. 32.
    Sievers, A.J., Takeno, S.: Phys. Rev. Lett. 61, 970–973 (1988)CrossRefADSGoogle Scholar
  33. 33.
    Singh, S.B., Limaye, M.V., Date, S.K., Gokhale, S., Kulkarni, S.K.: Phys. Rev. B 80, 235421 (2009)CrossRefADSGoogle Scholar
  34. 34.
    Xu, X., Xu, C., Dai, J., Hu, J., Li, F., Zhang, S.: J. Phys. Chem. C 116, 8813 (2012)CrossRefGoogle Scholar
  35. 35.
    Patel, S.P., Pivin, J.C., Patel, M.K., Won, J., Chandra, R., Kanjilal, D., Kumar, L.: J. Magn. Magn. Mater 324, 2136–2141 (2012)CrossRefADSGoogle Scholar
  36. 36.
    Hays, J., Reddy, K.M., Graces, N.Y., Engelhard, M.H., Shutthanandan, V., Luo, M., Xu, C., Giles, N.C., Wang, C., Thevuthasan, S., Punnoose, A.: J. Phys.: Conden. Matt. 19, 266203 (2007)ADSGoogle Scholar
  37. 37.
    Hays, J., Reddy, K.M., Graces, N.Y., Engelhard, M.H., Shutthanandan, V., Luo, M., Xu, C., Giles, N.C., Wang, C., Thevuthasan, S., Punnoose, A.: J. Phys: Condens. Matt. 19, 266203 (2007)ADSGoogle Scholar
  38. 38.
    Neeleshwar, S., Chen, C.L., Tsai, C.B., Chen, Y.Y., Chen, C.C., Shyu, S.G., Seehra, M.S.: Phys. Rev. B 71, 201307 (2005)CrossRefADSGoogle Scholar
  39. 39.
    Singh, J., Verma, N.K.: J. Supercond. Nov. Magn. 25, 2425–2430 (2012)CrossRefGoogle Scholar
  40. 40.
    Meulenberg, R.W., Lee, J.R., McCall, S.K., Hanif, K.M., Haskel, D., Lang, J.C., Terminello, L.J., Buuren, T.v.: J. Am. Chem. Soc. 131, 6888–6889 (2009)CrossRefGoogle Scholar
  41. 41.
    Furdyna, J.K.: J. Appl. Phys. 64, R29–R64 (1988)CrossRefADSGoogle Scholar
  42. 42.
    Santara, B., Pal, B., Giri, P.K.: J. Appl. Phys. 110, 114322–114322 (2011)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Nano Research Lab, School of Physics and Materials ScienceThapar UniversityPatialaIndia

Personalised recommendations