Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 27, Issue 9, pp 2111–2115 | Cite as

Magnetic Properties of Fe 3 O 4 Nanoparticles Synthesized by Coprecipitation Method

  • P. H. Linh
  • D. H. Manh
  • P. T. Phong
  • L. V. Hong
  • N. X. Phuc
Original Paper

Abstract

In this paper, we elucidate several specific magnetic properties of Fe 3 O 4nanoparticles synthesized by coprecipitation method. The characterizations by X-ray diffraction technique (XRD) and scanning electron microscopy (SEM) showed the particles to be of spinel structure and spherical shapes whose diameter could be controlled in the range from 14 to 22 nm simply by adjusting the precursor salts concentration and coprecipitation temperature. Magnetic properties of the Fe 3 O 4 nanoparticles measured by using vibration sample magnetometer (VSM) indicated the saturation magnetization and blocking temperature to increase with the particles size. Fe 3 O 4 nanoparticles with crystal size smaller than 22 nm exhibits superparamagnetic behavior at room temperatures. Characteristic magnetic parameters of the particles including saturation magnetization, effective anisotropy constant, and magnetocrystalline anisotropy constant have been determined. The observed decrease of saturation magnetization was explained on the base of core-shell model. A simple analysis indicated that the shell thickness decreases with an increase in particle size.

Keywords

Magnetic properties Magnetite nanoparticles Superparamagnetic Core-shell model 

Notes

Acknowledgments

This work was supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.02-2011.31, Institutes of Materials Science and National Key Laboratory for Electronic Material and Devices, Vietnam Academy of Science and Technology.

References

  1. 1.
    Caruntu, D., Caruntu, G., O’Connor, C.J.: Magnetic properties of variable-sized Fe 3 O 4 nanoparticles synthesized from non-aqueous homogeneous solutions of polyols. J. Phys. D: Appl. Phys. 40, 5801–5809 (2007)CrossRefADSGoogle Scholar
  2. 2.
    Mahmoudi, M., Mahmoudi, S., Sant, S., Wang, B., Laurent, S., Sen, T.: Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev. 63, 24–46 (2011)CrossRefGoogle Scholar
  3. 3.
    Kwon, S.G., Piao, Y., Park, J., Angappane, S., Jo, Y., Hwang, N.-M., Park, J.-G., Hyeon, T.: Kinetics of monodisperse iron oxide nanocrystal formation by “heating-up” process. J. Am. Chem. Soc. 129, 12571–12584 (2007)CrossRefGoogle Scholar
  4. 4.
    Goya, G.F., Berquo, T.S., Fonseca, F.C.: Static and dynamic magnetic properties of spherical magnetite nanoparticles. J. Appl. Phys. 94, 3520–3528 (2003)CrossRefADSGoogle Scholar
  5. 5.
    Linh, P.H., Thach, P.V., Tuan, N.A., Thuan, N.C., Manh, D.H., Phuc, N.X., Hong, L.V.: Magnetic fluid based on Fe 3 O 4 nanoparticles: preparation and hyperthermia application. J. Phys.: Conf. Ser. 187, 012069 (2009)ADSGoogle Scholar
  6. 6.
    Cullity, B.D.: Elements of X-Ray Diffraction, vol. 2nd ed., p. 356.Addison-Wesley, Reading (1978)Google Scholar
  7. 7.
    Morales, M.P., Veintemillas-Verdaguer, S., Montero, M.I., Serna, C.J., Roig, A., Casas, L.l., Martínez, B., Sandiumenge, F.: Surface and internal spin canting in γ-Fe 2 O 3 nanoparticles. Chem. Mater. 11, 3058–3064 (1999)CrossRefGoogle Scholar
  8. 8.
    Lima Jr. E., Brandl, A.L., Arelaro, A.D., Goy, G.F.: Spin disorder and magnetic anisotropy in Fe 3 O 4 nanoparticles. J. Appl. Phys. 99, 083908 (2006)CrossRefADSGoogle Scholar
  9. 9.
    Yang, H., Wang, Z., Song, L., Zhao, M., Wang, J., Luo, H.: A study on the coercivity and the magnetic anisotropy of the lithium ferrite nanocrystallite. J. Phys. D: Appl. Phys. 29, 2574–2578 (1996)CrossRefADSGoogle Scholar
  10. 10.
    Bate, G., Craik, D.J. (ed.): Magnetic Oxides. Wiley, London (1975)Google Scholar
  11. 11.
    Dunlop, D.J.: Superparamagnetic and single-domain threshold sizes in magnetite. J. Geophys. Res. 78, 1780–1792 (1973)CrossRefADSGoogle Scholar
  12. 12.
    Sarkar, D., Mandal, M.: Static and dynamic magnetic characterization of DNA-templated chain-like magnetite nanoparticles. J. Phys. Chem. C 116, 3227–3234 (2012)CrossRefGoogle Scholar
  13. 13.
    Gangopadhyay, S., Hadjipanayis, G.C., Dale, B., Sorensen, C.M., Klabunde, K.J., Papaefthymiou, V., Kostikas, A.: Magnetic properties of ultrafine iron particles. Phys. Rev. B 45, 9778 (1992)CrossRefADSGoogle Scholar
  14. 14.
    Manh, D.H., Phong, P.T., Thanh, T.D., Nam, D.N.H., Hong, L.V., Phuc, N.X.: Size effects and interactions in La 0.7Ca 0.3MnO 3 nanoparticles. J. Alloys Compd. 509, 1373–1377 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute of Materials ScienceVietnam Academy of Science and TechnologyHanoiVietnam
  2. 2.Nha Trang Pedagogic CollegeNha Trang CityVietnam
  3. 3.Department of Advanced Materials ChemistryDongguk University GyeongjuGyeongbukSouth Korea

Personalised recommendations