Journal of Superconductivity and Novel Magnetism

, Volume 27, Issue 8, pp 1825–1829 | Cite as

Mössbauer Investigation of Superconductors LaFeO 0.85F 0.15As and High-Temperature Kondo Effect

  • A. V. Alduschenkov
  • O. V. Geraschenko
  • A. L. Kholmetskii
  • V. A. Lomonosov
  • L. V. Mahnach
  • M. Mashlan
  • I. S. Okunev
  • J. Tucek
  • T. Yarman
Original Paper

Abstract

We report the results of investigation of high-temperature superconductor (HTSC) LaFeO (1−x)F xAs at x = 0.15. We applied the XRD method, the measurement of the hysteresis curve and resistivity, as well as the Mössbauer measurements at the temperature range 4.2–300 K. We show that in the given sample, owing to doping by fluorine, full suppression of antiferromagnetism is not accompanied by the rise of superconductivity. Instead, we observe a high-temperature (at T ≤ 40 K) Kondo effect, which indicates a strong coupling of electron’s spins with the magnetic moments of impurities. We also find a correlation between the revealed high-temperature Kondo effect and the appearance of a quadrupole splitting in the Mössbauer spectra below 40 K. The revealed effects can shed light on the mechanism of superconductivity in the iron-containing HTSC.

Keywords

Iron-containing superconductors Mössbauer spectroscopy Kondo effect 

References

  1. 1.
    Kamihara, Y., et al.: J. Am. Chem. Soc. 130, 3296 (2008)Google Scholar
  2. 2.
    Nagamatsu, J., et al.: Nature 410, 63 (2008)Google Scholar
  3. 3.
    Chen, X.H., et al.: Nature 453, 761 (2008)Google Scholar
  4. 4.
    Ju, A., Izyumov, Ju.A., Kurmaev, E.Z.: High-temperature superconductors based on FeAs compounds. Regulyarnaya i haotichnaya dinamika, Moscow (2009). (in Russian)Google Scholar
  5. 5.
    Kuzzman, E., et al.: Phys. Rev. B39, 328 (1989)CrossRefADSGoogle Scholar
  6. 6.
    Kuzzman, E., et al.: Hyp. Int. 70, 1147 (1992)Google Scholar
  7. 7.
    Ljubutin, I.S., et al.: Physica C169, 371 (1990)Google Scholar
  8. 8.
    Homonnay, Z., et al.: Hyp. Int. 55, 1301 (1990)Google Scholar
  9. 9.
    Nagu, S., et al.: A. Nath. Struc. Chem. 1, 297 (1990)Google Scholar
  10. 10.
    Kuzzman, E., Nagu, S., Vertes, A.: In: Alfassi, Z. (ed.) Chemical Analysis by Nuclear Methods. Wiley, New York (1993)Google Scholar
  11. 11.
    Kitao, S., et al.: J. Phys. Sci. Jpn. 77, 103706Google Scholar
  12. 12.
    Klauss, H.-H., et al.: Phys. Rev. Lett. 101, 077005 (2008)Google Scholar
  13. 13.
    Nowik, I., et al.: J. Phys. Condens. Matt. 20, 292201 (2008)Google Scholar
  14. 14.
    Werner, P.-E., Eriksson, L., Westdahl, M.: J. Appl. Crystallogr. 18, 367 (1985)CrossRefGoogle Scholar
  15. 15.
    Boeri, L., Dolgov, O.V., Golubov, A.A.: Phys. Rev. Lett. 101, 026403 (2008)CrossRefADSGoogle Scholar
  16. 16.
    Kondo, J.: Prog. Theor. Phys. 32, 37 (1964)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. V. Alduschenkov
    • 1
  • O. V. Geraschenko
    • 1
  • A. L. Kholmetskii
    • 2
  • V. A. Lomonosov
    • 2
  • L. V. Mahnach
    • 2
  • M. Mashlan
    • 3
  • I. S. Okunev
    • 1
  • J. Tucek
    • 3
  • T. Yarman
    • 4
  1. 1.St.-Petersburg Institute of Nuclear PhysicsSt.-PetersburgRussia
  2. 2.Belarusian State UniversityMinskBelarus
  3. 3.Palacky UniversityOlomoucCzech Republic
  4. 4.Okan UniversityIstanbulTurkey

Personalised recommendations