Advertisement

Effect of Particle Size on Magnetic and Dielectric Properties of Nanoscale Dy-Doped BiFeO3

  • Gitanjali Dhir
  • Poonam Uniyal
  • N. K. Verma
Original Paper

Abstract

In the present report, influence of Dy-substitution and size on the structural, magnetic and dielectric properties of BiFeO3 nanoparticles has been investigated. The synthesis of pure and Dy-doped BiFeO3 nanoparticles has been done successfully using sol–gel method. Size of Dy-doped BiFeO3 nanoparticles was tailored by varying the calcination temperature. Structural analysis reveal that substitution of Dy3+ leads to a change in structure from rhombohedral (x=0) to orthorhombic (x=0.15). The average crystallite size varies from 6 to 15 nm. Magnetic study reveals the enhancement in magnetization with the doping of Dy3+. Further, this value decreases as the particle size increases. Dielectric property improves with the Dy3+ substitution. All the nanoparticles display Debye-type relaxation. The low dielectric loss values observed are attributed to the nanosized grains. Remarkably, enhanced saturation magnetization value (13.8 emu/g) and dielectric constant value (95.8) were observed for Dy-doped BiFeO3 nanoparticles having the smallest particle size. Thereby, the study indicates strong correlation between size and multiferroism.

Keywords

Size-dependent Nanoparticles Magnetic materials Dielectric Ferromagnetism 

Notes

Acknowledgements

This research work is supported by Government of India, Department of Atomic Energy (DAE), Board of Research in Nuclear Sciences (BRNS) vide sanction No. 2012/37P/48/BRNS.

References

  1. 1.
    Hill, N.A.: J. Phys. Chem. B 104, 6694 (2000) CrossRefGoogle Scholar
  2. 2.
    Fiebig, M.: J. Phys. D 38, R123 (2005) CrossRefADSGoogle Scholar
  3. 3.
    Schmid, H.: Ferroelectrics 162, 665 (1994) Google Scholar
  4. 4.
    Guo, R., Fang, L., Dong, W., Zheng, F., Shen, M.: J. Phys. Chem. C 114, 21390 (2010) CrossRefGoogle Scholar
  5. 5.
    Liu, J., Fang, L., Zheng, F., Ju, S., Shen, M.: Appl. Phys. Lett. 95, 022511 (2009) CrossRefADSGoogle Scholar
  6. 6.
    Qian, F.Z., Jiang, J.S., Jiang, D.M., Zhang, W.G., Liu, J.H.: J. Phys. D, Appl. Phys. 43, 025403 (2010) CrossRefADSGoogle Scholar
  7. 7.
    Wang, Y., Nan, C.W.: J. Appl. Phys. 103, 024103 (2008) CrossRefADSGoogle Scholar
  8. 8.
    Qian, F.Z., Jiang, J.S., Guo, S.Z., Jiang, D.M., Zhang, W.G.: J. Appl. Phys. 106, 084312 (2009) CrossRefADSGoogle Scholar
  9. 9.
    Chakrabarti, K., Das, K., Sarkar, B., De, S.K.: J. Appl. Phys. 110, 103905 (2011) CrossRefADSGoogle Scholar
  10. 10.
    Bhushan, B., Wang, Z., van Tol, J., Dalal, N.S., Basumallick, A., Vasanthacharya, N.Y., Kumar, S., Das, D.: J. Am. Ceram. Soc. 95, 1985 (2012) CrossRefGoogle Scholar
  11. 11.
    Chakrabarti, K., Das, K., Sarkar, B., Ghosh, S., De, S.K., Sinha, G., Lahtinen, J.: Appl. Phys. Lett. 101, 042401 (2012) CrossRefADSGoogle Scholar
  12. 12.
    Lotey, G.S., Verma, N.K.: J. Nanopart. Res. 14, 1 (2012) Google Scholar
  13. 13.
    Park, T.J., Papaefthymiou, G.C., Viescas, A.J., Moodenbaugh, A.R., Wong, S.S.: Nano Lett. 7, 766 (2007) CrossRefADSGoogle Scholar
  14. 14.
    Selbach, S.M., Tybell, T., Einarsrud, M.A., Grande, T.: Chem. Mater. 19, 6478 (2007) CrossRefGoogle Scholar
  15. 15.
    Goswami, S., Bhattacharya, D., Choudhury, P.: J. Appl. Phys. 109, 07D737 (2011) Google Scholar
  16. 16.
    Jaiswal, A., Das, R., Vivekanand, K., Abraham, P.M., Adyanthaya, S., Poddar, P.: J. Phys. Chem. C 114, 2108 (2010) CrossRefGoogle Scholar
  17. 17.
    Mazumder, R., Sujatha Devi, P., Bhattacharya, D., Choudhury, P., Sen, A.: Appl. Phys. Lett. 91, 062510 (2007) CrossRefADSGoogle Scholar
  18. 18.
    Mandal, S.K., Rakshit, T., Ray, S.K., Mishra, S.K., Krishna, P.S.R., Chandra, A.: J. Phys. Condens. Matter 25, 055303 (2013) CrossRefADSGoogle Scholar
  19. 19.
    Dhir, G., Lotey, G.S., Uniyal, P., Verma, N.K.: J. Mater. Sci., Mater. Electron. 24, 4386 (2013) CrossRefGoogle Scholar
  20. 20.
    Lotey, G.S., Verma, N.K.: J. Mater. Sci., Mater. Electron. 24, 3723 (2013) CrossRefGoogle Scholar
  21. 21.
    Zhang, X., Sui, Y., Wang, X., Wang, Y., Wang, Z.: J. Alloys Compd. 507, 157 (2010) CrossRefGoogle Scholar
  22. 22.
    Adachi, G., Imanaka, N.: Chem. Rev. 98, 1479 (1998) CrossRefGoogle Scholar
  23. 23.
    Debye, P.: Ann. Phys. 351, 809 (1915) CrossRefGoogle Scholar
  24. 24.
    Gautam, A., Rangra, V.S.: Cryst. Res. Technol. 45, 953 (2010) CrossRefGoogle Scholar
  25. 25.
    Khanna, L., Verma, N.K.: J. Magn. Magn. Mater. 336, 1 (2013) CrossRefADSGoogle Scholar
  26. 26.
    Bhushan, B., Basumallick, A., Bandopadhyay, S.K., Vasanthacharya, N.Y., Das, D.: J. Phys. D, Appl. Phys. 42, 065004 (2009) CrossRefADSGoogle Scholar
  27. 27.
    Hu, W., Li, L., Tong, W., Li, G., Yan, T.: J. Mater. Chem. 20, 8659 (2010) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Nano Research Lab, School of Physics and Materials ScienceThapar UniversityPatialaIndia

Personalised recommendations