Asymmetry of Magnetization Reversal of Pinned Layer in NiFe/Cu/NiFe/IrMn Spin-Valve Structure

  • N. G. Chechenin
  • P. N. Chernykh
  • S. A. Dushenko
  • I. O. Dzhun
  • A. Y. Goikhman
  • V. V. Rodionova
Original Paper

Abstract

Two types of asymmetry in giant magnetoresistance (GMR) are observed which are not related to a training effect, but indicate different mechanisms of magnetization reversal of the pinned layer in spin-valve (SV) structures for ascending and descending field scans. GMR, exchange bias and coercivity in Si/Ta/NiFe/Cu/NiFe/IrMn/Ta SV-structures were investigated as functions of the thickness of the nonmagnetic spacer. The spacer thickness effects are discussed in correlation with layers microstructure and interfaces morphology variations.

Keywords

Spin-valve structure Reversal asymmetry Magnetoresistance Vibration sample magnetometry Exchange bias Coercivity 

References

  1. 1.
    Meiklejohn, W.H., Bean, C.P.: New magnetic anisotropy. Phys. Rev. 105, 904–913 (1957) CrossRefADSGoogle Scholar
  2. 2.
    Baibich, M.N., Broto, J.M., Fert, A., Van Dau, F.N., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J.: Giant magnetoresistance of (001)Fe/(001) Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988) CrossRefADSGoogle Scholar
  3. 3.
    Binasch, G., Grünberg, P., Saurenbach, F., Zinn, W.: Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989) CrossRefADSGoogle Scholar
  4. 4.
    Kools, J.C.S.: Exchange-biased spin-valves for magnetic storage. IEEE Trans. Magn. 32, 20 (1996) CrossRefGoogle Scholar
  5. 5.
    Nogués, J., Schuller, I.K.: Exchange bias. J. Magn. Magn. Mater. 192, 203–232 (1999) CrossRefADSGoogle Scholar
  6. 6.
    Parkin, S.S.P.: Giant magnetoresistance in magnetic nanostructures. Annu. Rev. Mater. Sci. 25, 357–388 (1995) CrossRefADSGoogle Scholar
  7. 7.
    O’Grady, K., Fernandez-Outon, L.E., Vallejo-Fernandez, G.: A new paradigm for exchange bias in polycrystalline thin films. J. Magn. Magn. Mater. 322, 883–899 (2010) CrossRefADSGoogle Scholar
  8. 8.
    Speriosu, V.S., Nozieres, J.P., Gurney, B.A., Dieny, B., Huang, T.C., Lefakis, H.: Role of interfacial mixing in giant magnetoresistance. Phys. Rev. B 47, 11579–11582 (1993) CrossRefADSGoogle Scholar
  9. 9.
    Rijks, T.G.S.M., Coehoorn, R., Daemen, J.T.F., de Jonge, W.J.M.: Interplay between exchange biasing and interlayer exchange coupling in Ni80Fe20/Cu/Ni80Fe20/Fe50Mn50 layered systems. J. Appl. Phys. 76, 1092–1099 (1994) CrossRefADSGoogle Scholar
  10. 10.
    Rao, B.P., Kumar, S.A., Caltun, O.F., Kim, C.: Dependence of exchange bias field and coercivity on spacer layer thickness in FeMn/NiFe/Cu/NiFe spin valve structures. J. Optoelectron. Adv. Mater. 10, 1881–1884 (2008) Google Scholar
  11. 11.
    Ro, J.-C., Choi, J.-S., Suh, S.-J., Lee, H.-J.: Effect of microstructures on exchange anisotropy in Mn–Ir/Ni–Fe exchange-biased multilayers with various stacking structures. IEEE Trans. Magn. 35, 3925–3927 (1999) CrossRefADSGoogle Scholar
  12. 12.
    van Driel, J., de Boer, F.R., Lenssen, K.M.H., Coehoorn, R.: Exchange biasing by Ir19Mn81: dependence on temperature, microstructure and antiferromagnetic layer thickness. J. Appl. Phys. 88, 975–982 (2000) CrossRefADSGoogle Scholar
  13. 13.
    Jung, H.S., Doyle, W.D., Fujiwara, H., Wittig, J.E., Al-Sharab, J.F., Bentley, J., Evans, N.D.: Exchange coupling in FeTaN/IrMn/FeTaN and NiFe/IrMn/NiFe trilayer films. J. Appl. Phys. 91, 6899–6901 (2002) CrossRefADSGoogle Scholar
  14. 14.
    Khomenko, E.V., Chechenin, N.G., Goikhman, A.Y., Zenkevich, A.V.: Exchange bias in the IrMn/Co structures with alternative sequences of antiferromagnetic and ferromagnetic layers. JETP Lett. 88, 602–606 (2008) CrossRefADSGoogle Scholar
  15. 15.
    Khomenko, E.V., Chechenin, N.G., Dzhun’, I.O., Perov, N.S., Samsonova, V.V., Goı̌khman, A.Y., Zenkevich, A.V.: Magnetic anisotropy in IrMn/Co structures with an alternative sequence of deposition of antiferromagnetic and ferromagnetic layers. Phys. Solid State 52, 1701–1708 (2010) CrossRefADSGoogle Scholar
  16. 16.
    Hu, Y., Wu, G.-Z., Liu, Y., Du, A.: Relative-thickness dependence of exchange bias in bilayers and trilayers. J. Magn. Magn. Mater. 324, 3204–3208 (2012) CrossRefADSGoogle Scholar
  17. 17.
    Dieny, B.: Giant magnetoresistance in spin-valve multilayers. J. Magn. Magn. Mater. 136, 335–359 (1994) CrossRefADSGoogle Scholar
  18. 18.
    Alben, R., Becker, J.J., Chi, M.C.: Random anisotropy in amorphous ferromagnetics. J. Appl. Phys. 49, 1653–1658 (1978) CrossRefADSGoogle Scholar
  19. 19.
    Herzer, G.: Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 26, 1397–1402 (1990) CrossRefADSGoogle Scholar
  20. 20.
    Gredig, T., Krivorotov, I.N., Dahlberg, E.D.: Magnetization reversal in exchange biased Co/CoO probed with anisotropic magnetoresistance. J. Appl. Phys. 91, 7760–7762 (2002) CrossRefADSGoogle Scholar
  21. 21.
    Brems, S., Buntinx, D., Temst, K., Van Haesendonck, C., Radu, F., Zabel, H.: Reversing the training effect in exchange biased CoO/Co bilayers. Phys. Rev. Lett. 95, 157202 (2005) CrossRefADSGoogle Scholar
  22. 22.
    Gredig, T., Krivorotov, I.N., Dahlberg, E.D.: Temperature dependence of magnetization reversal and angular torque in Co/CoO. Phys. Rev. B 74, 094431 (2006) CrossRefADSGoogle Scholar
  23. 23.
    Camarero, J., Sort, J., Hoffmann, A., García-Martín, J.M., Dieny, B., Miranda, R., Nogués, J.: Origin of the asymmetric magnetization reversal behavior in exchange-biased systems: competing anisotropies. Phys. Rev. Lett. 95, 57204 (2005) CrossRefADSGoogle Scholar
  24. 24.
    Stiles, M.D., McMichael, R.D.: Temperature dependence of exchange bias in polycrystalline ferromagnet–antiferromagnet bilayers. Phys. Rev. B 60, 12950 (1999) CrossRefADSGoogle Scholar
  25. 25.
    Nikitenko, V.I., Gornakov, V.S., Shapiro, A.J., Shull, R.D., Liu, K., Zhou, S.M., Chien, C.L.: Asymmetry in elementary events of magnetization reversal in a ferromagnetic/antiferromagnetic bilayer. Phys. Rev. Lett. 84, 765–768 (2000) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • N. G. Chechenin
    • 1
  • P. N. Chernykh
    • 1
  • S. A. Dushenko
    • 1
    • 2
  • I. O. Dzhun
    • 1
  • A. Y. Goikhman
    • 3
  • V. V. Rodionova
    • 2
    • 3
    • 4
  1. 1.Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussia
  2. 2.Faculty of PhysicsLomonosov Moscow State UniversityMoscowRussia
  3. 3.Immanuel Kant Baltic Federal UniversityKaliningradRussia
  4. 4.Departamento de Fisica de Materiales, Facultad de QuimicasUPV/EHUSan SebastianSpain

Personalised recommendations