Study of Structural and Magnetic Properties of Superparamagnetic Fe3O4–ZnO Core–Shell Nanoparticles

  • Alireza Ahadpour Shal
  • Atefeh Jafari
Original Paper


In this work, Fe3O4–ZnO core–shell nanoparticles have been successfully synthesized using a simple two-step co-precipitation method. In this regard, Fe3O4 (magnetite) and ZnO (zincite) nanoparticles (NPs) were synthesized separately. Then, the surface of the Fe3O4 NPs was modified with trisodium citrate in order to improve the attachment of ZnO NPs to the surface of Fe3O4 NPs. Afterwards, the modified magnetite NPs were coated with ZnO NPs. Moreover, the influence of the core to shell molar ratio on the structural and magnetic properties of the core–shell NPs has been investigated. The prepared nanoparticles have been characterized utilizing transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and vibrating sample magnetometer (VSM). The results of XRD indicate that Fe3O4 NPs with inverse spinel phase were formed. The results of VSM imply that the Fe3O4–ZnO core–shell NPs are superparamagnetic. The saturation magnetization of prepared Fe3O4 NPs is 54.24 emu/g and it decreases intensively down to 29.88, 10.51 and 5.75 emu/g, after ZnO coating with various ratios of core to shell as 1:1, 1:10 and 1:20, respectively. This reduction is attributed to core–shell interface effects and shielding. TEM images and XRD results imply that ZnO-coated magnetite NPs are formed. According to the TEM images, the estimated average size for most of core–shell NPs is about 12 nm.


Fe3O4 ZnO Core–shell Nanoparticle Superparamagnetic 



We gratefully acknowledge Islamic Azad University of Lahijan (affiliation) for financial and University of Guilan for the facility supports. Also, the authors are grateful to Professor S. Farjami-Shayesteh, Professor T. Dumelow and K. Boustani for their valuable suggestions that enhanced the quality of the manuscript.


  1. 1.
    Wan, J., Li, H., Chen, K.: Synthesis and characterization of Fe3O4–ZnO core–shell structured nanoparticles. Mater. Chem. Phys. 114, 30–32 (2009) CrossRefADSGoogle Scholar
  2. 2.
    Masoudi, A., Madaah-Hosseini, H.R., Seyed-Reyhani, S.M., Shokrgozar, M.A., Oghabian, M.A., Ahmadi, R.: Long-term investigation on the phase stability, magnetic behavior, toxicity, and MRI characteristics of superparamagnetic Fe/Fe-oxide core/shell nanoparticles. Int. J. Pharm. 439, 28–40 (2012) CrossRefGoogle Scholar
  3. 3.
    Helmi-Rashid-Farimani, M., Shahtahmasebi, N., Rezaee Roknabadi, M., Ghows, N., Kazemi, A.: Study of structural and magnetic properties of superparamagnetic Fe3O4/SiO2 core–shell nanocomposites synthesized with hydrophilic citrate-modified Fe3O4 seeds via a sol–gel approach. Physica E 53, 207–216 (2013) CrossRefADSGoogle Scholar
  4. 4.
    Jeng, H.T., Guo, G.Y., Huang, D.J.: Charge-orbital ordering and Verwey transition in magnetite. Phys. Rev. Lett. 93, 156403 (2004) CrossRefADSGoogle Scholar
  5. 5.
    Verwey, E.J., Haayman, P.W., Romeijn, F.C.: Physical properties and cation arrangement of oxides with spinel structures, II: electronic conductivity. J. Chem. Phys. 15, 181–187 (1947) CrossRefADSGoogle Scholar
  6. 6.
    Lu, Y., Yin, Y., Mayers, B.T., Xia, Y.: Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol–gel approach. Nano Lett. 2, 183–186 (2002) CrossRefADSGoogle Scholar
  7. 7.
    Kunzmann, A., Andersson, B., Vogt, C., Feliu, N., Ye, F., Gabrielsson, S., Toprak, M.S., Buerki-Thurnherr, T., Laurent, S., Vahter, M., Krug, H., Muhammed, M., Scheynius, A., Fadeel, B.: Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells. Toxicol. Appl. Pharmacol. 253, 81–93 (2011) CrossRefGoogle Scholar
  8. 8.
    Mahmoudi, M., Sant, S., Wang, B., Laurent, S., Sen, T.: Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev. 63, 24–46 (2011) CrossRefGoogle Scholar
  9. 9.
    Cho, N.H., Cheong, T.C., Hyun-Min, J., Hua-Wu, J., Lee, S.J., Kim, D., Yang, J.S., Kim, S., Kim, Y.K., Seong, S.Y.: A multifunctional core–shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat. Nanotechnol. 6, 675–682 (2011) CrossRefADSGoogle Scholar
  10. 10.
    Jang, J.H., Lim, H.B.: Characterization and analytical application of surface modified magnetic nanoparticles. Microchem. J. 94, 148–158 (2010) CrossRefGoogle Scholar
  11. 11.
    Hong, R.Y., Zhang, S.Z., Di, G.Q., Li, H.Z., Zheng, Y., Ding, J., Wei, D.G.: Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles. Mater. Res. Bull. 43, 2457–2468 (2008) CrossRefGoogle Scholar
  12. 12.
    Beltran-Huarac, J.C., Tomar, M.S., Singh, S.P., Perales-Perez, O., Rivera, L., Pena, S.: Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles. NSTI-Nanotech. 3, 405–408 (2010) Google Scholar
  13. 13.
    Jafari, A., Boustani, K., Farjami-Shayesteh, S.: Effect of carbon shell on the structural and magnetic properties of Fe3O4 superparamagnetic nanoparticles. J. Supercond. Nov. Magn. (2013). doi: 10.1007/s10948-013-2239-8 Google Scholar
  14. 14.
    Buxbuam, G.: Industrial inorganic pigments, 2nd edn. Wiley-VCH, Weinheim (1998) CrossRefGoogle Scholar
  15. 15.
    Yaacob, I.I., Nunes, A.C., Bose, A., Shah, D.O.: Synthesis and characterization of magnetic nanoparticles in spontaneously generated vesicles. J. Colloid Interface Sci. 168, 289–301 (1994) CrossRefGoogle Scholar
  16. 16.
    Sato, T., Iijima, T., Seki, M., Inagaki, N.: Magnetic properties of ultrafine ferrite particles. J. Magn. Magn. Mater. 65, 252–256 (1987) CrossRefADSGoogle Scholar
  17. 17.
    Ahmad, S., Riaz, U., Kaushik, A., Alam, J.: Soft template synthesis of super paramagnetic Fe3O4 nanoparticles: a novel technique. J. Inorg. Organomet. Polym. 19, 355–360 (2009) CrossRefGoogle Scholar
  18. 18.
    Lin, C.R., Chu, Y.M., Wang, S.C.: Magnetic properties of magnetite nanoparticles prepared by mechanochemical reaction. Mater. Lett. 60, 447–450 (2006) CrossRefGoogle Scholar
  19. 19.
    Kaiser, R., Miskolczy, G.: Magnetic properties of stable dispersions of subdomain magnetite particles. J. Appl. Phys. 41, 1064–1073 (1970) CrossRefADSGoogle Scholar
  20. 20.
    Ozkaya, T., Toprak, M.S., Baykal, A., Kavas, H., Koseoglu, Y., Aktas, B.: Synthesis of Fe3O4 nanoparticles at 100 C and its magnetic characterization. J. Alloys Compd. 472, 18–23 (2009) CrossRefGoogle Scholar
  21. 21.
    Zhang, K., Amponsah, O., Arslan, M., Holloway, T., Sinclair, D., Cao, W., Bahoura, M., Pradhan, A.K.: Magnetic nanocomposite spinel and FeCo core–shell and mesoporous systems. J. Magn. Magn. Mater. 324, 1938–1944 (2012) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Faculty of EngineeringIslamic Azad UniversityLahijanIran
  2. 2.Nanostructure Lab, Physics DepartmentUniversity of GuilanRashtIran

Personalised recommendations