Investigation and Simulation of a Two-Channel Drop Filter with Tunable Double Optical Resonators

  • Meysam Niyazi
  • Abdollah Amirkhani
  • Mohammad Reza Mosavi
Original Paper


In this paper, a photonic crystal (PhC) two-channel drop filter based on two 2×2 & 2×3 ring resonators is proposed. This structure is made of Germanium rods in an air background at a two-dimensional (2D) square lattice. Refractive index is chosen in a way in which that device can be easily fabricated. The photonic crystal two-channel drop filter is composed using a horizontal waveguide and two ring resonators, which are placed symmetrically about the horizontal axis. These ring resonators operate as energy coupling and capture the electromagnetic energy propagated in bus waveguide at their resonance frequencies. The filter characteristics are calculated using 2D finite-difference time-domain (FDTD) and plane wave expansion (PWE) methods. We show a two-channel drop filter with two resonators, based on studied basic structures and achieving optimal modes for channel drop filters with one resonator. We have done this through choosing the proper radii for all rods of lattice, setting radii of coupling rods, lattice constant, and studying basic structures having different refractive indexes. Finally, we show 84 % and 100 % dropping efficiencies can be achieved at D and C ports in the communication window and 100 % in direct port. The size of this device is 14.56 μm (length)×11.96 μm (width). This small size makes it possible to use the device in multiplexer applications in future communication systems and in all-optical integrated circuits.


Finite difference time-domain Ring resonators Plane wave expansion Multiplexer All-optical integrated circuits 


  1. 1.
    Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987) CrossRefADSGoogle Scholar
  2. 2.
    Dmitriev, V., Kawakatsu, M.N., Portela, G.: Compact optical switch based on 2D photonic crystal magneto-optical cavity. Opt. Lett. 38, 1016–1018 (2013) CrossRefADSGoogle Scholar
  3. 3.
    Notomi, M., Shinya, A., Mitsugi, S., Kira, G., Kuramochi, E., Tanabe, T.: Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Opt. Express 13, 2678–2687 (2005) CrossRefADSGoogle Scholar
  4. 4.
    Hu, X., Wang, Y., Liu, Y., Cheng, B., Zhang, D.: An optical switching in two dimensional Ce: BaTiO3 nonlinear photonic crystal. Opt. Commun. 237, 371–377 (2004) CrossRefADSGoogle Scholar
  5. 5.
    Liu, V., Jiao, Y., Miller, D.A.B., Fan, S.: Design methodology for compact photonic-crystal-based wavelength division multiplexers. Opt. Lett. 36, 591–593 (2011) CrossRefADSGoogle Scholar
  6. 6.
    Zhang, X., Liao, Q., Yu, T., Liu, N., Huang, Y.: Novel ultracompact wavelength division demultiplexer based on photonic band gap. Opt. Commun. 285, 274–276 (2012) CrossRefADSGoogle Scholar
  7. 7.
    Shen, G., Tian, H., Ji, Y.: Ultracompact ring resonator microwave photonic filters based on photonic crystal waveguides. Appl. Opt. 52, 1218–1225 (2013) CrossRefADSGoogle Scholar
  8. 8.
    Tsarev, A.V.: Compact acousto-optic filter with beam expanders constituted by photonic crystal rows of airholes. Opt. Lett. 35, 4033–4035 (2010) CrossRefADSGoogle Scholar
  9. 9.
    Ma, Z., Ogusu, K.: Channel drop filters using photonic crystal Fabry-Perot resonators. Opt. Commun. 284, 1192–1196 (2011) CrossRefADSGoogle Scholar
  10. 10.
    Kim, S.H., Ryu, H.Y., Park, H.G., Kim, G.H., Choi, Y.S., Lee, Y.H.: Two-dimensional photonic crystal hexagonal waveguide ring laser. Appl. Phys. Lett. 81, 2499–2501 (2002) CrossRefADSGoogle Scholar
  11. 11.
    Besten, J.H., Broeke, R.G., Geemert, M.V., Binsma, J.J.M., Heinrichsdorff, F., Dongen, T.V., Bente, E.A.J.M., Leijtens, X.J.M., Smit, M.K.: An integrated coupled-cavity 16-wavelenght digitally tunable laser. IEEE Photonics Technol. Lett. 14, 1653–1655 (2002). 2002 CrossRefADSGoogle Scholar
  12. 12.
    Srivastava, S.K., Awasthi, S.K.: Broadening of photonic band gap in a one dimensional superconductor star waveguide structure. J. Supercond. Nov. Magn. 25, 883–892 (2012) CrossRefzbMATHGoogle Scholar
  13. 13.
    Zhang, H.F., Liu, S.B., Yang, H., Li, H.M.: Investigating the omnidirectional photonic band gap in one-dimensional superconductor-dielectric photonic crystals with a modified ternary Fibonacci quasiperiodic structure. J. Supercond. Nov. Magn. (2013). doi: 10.1007/s10948-013-2202-8 Google Scholar
  14. 14.
    Shen, H., Khan, M.H., Fan, L., Zhao, L., Xuan, Y., Ouyang, J., Varghese, L.T., Qi, M.: Eight-channel reconfigurable microring filters with tunable frequency, extinction ratio and bandwidth. Opt. Express 18, 18067–18076 (2010) CrossRefADSGoogle Scholar
  15. 15.
    Monifi, F., Friedlein, J., Ozdemir, S.K., Yang, L.: A robust and tunable add-drop filter using whispering gallery mode microtoroid resonator. IEEE J. Lightw. Technol. 30, 3306–3315 (2012) CrossRefADSGoogle Scholar
  16. 16.
    Wang, C.C., Chen, L.W.: Channel drop filters with floded directional couplers in two-dimensional photonic crystals. Physica B 405, 1210–1215 (2010) CrossRefADSGoogle Scholar
  17. 17.
    Wu, Y., Hsu, K., Shih, T., Lee, J.: New design of four-channel add-drop filters based on double-resonant cavity photonic crystals. J. Opt. Soc. Am. B 26, 640–644 (2009) CrossRefADSGoogle Scholar
  18. 18.
    Qiu, M., Jaskorzynska, B.: Design of a channel drop filter in a two-dimensional triangular photonic crystal. Appl. Phys. Lett. 83, 1074–1076 (2003) CrossRefADSGoogle Scholar
  19. 19.
    Noda, S., Chutinan, A., Imada, M.: Trapping and emission of photons by a single defect in a photonic bandgap structure. Nature 407, 608–610 (2000) CrossRefADSGoogle Scholar
  20. 20.
    Song, B., Asano, T., Akahane, Y., Noda, S.: Role of interfaces in hetero photonic crystals for manipulation of photons. Phys. Rev. B 71, 195101 (2005) CrossRefADSGoogle Scholar
  21. 21.
    Takano, H., Bong-Shik, S., Asano, T., Noda, S.: Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal. Appl. Phys. Lett. 86, 241101-3 (2005) CrossRefADSGoogle Scholar
  22. 22.
    Kumar, V.D., Srinivas, T., Selvarajan, A.: Investigation of ring resonators in photonic crystal circuits. Photonics Nanostruct. 2, 199–206 (2004) CrossRefADSGoogle Scholar
  23. 23.
    Qiang, Z., Zhou, W., Soref, R.A.: Optical add-drop filters based on photonic crystal ring resonators. Opt. Express 15, 1823–1831 (2007) CrossRefADSGoogle Scholar
  24. 24.
    Monifi, F., Ghaffari, A., Djavid, M., Abrishamian, M.S.: Three output port channel-drop filter based on photonic crystals. Appl. Opt. 48, 804–809 (2009) CrossRefADSGoogle Scholar
  25. 25.
    Djavid, M., Abrishamian, M.S.: Multi-channel drop filters using photonic crystal ring resonators. Optik—Int. J. Light Electron Opt. 123, 167–170 (2012) CrossRefGoogle Scholar
  26. 26.
    Robinson, S., Nakkeeran, R.: PCRR based add drop filter for ITU-TG.694.2 CWDM systems. Optik—Int. J. Light Electron Opt. 124, 393–398 (2013) CrossRefGoogle Scholar
  27. 27.
    Taalbi, A., Bassou, G., Mahmoud, M.Y.: New design of channel drop filters based on photonic crystal ring resonators. Optik—Int. J. Light Electron Opt. 124, 824–827 (2013) CrossRefGoogle Scholar
  28. 28.
    Inoue, K., Ohtaka, K.: Photonic Crystals: Physics, Fabrication and Applications. Springer, Berlin-Heidelberg-New York (2004) CrossRefGoogle Scholar
  29. 29.
    Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994) MathSciNetCrossRefADSzbMATHGoogle Scholar
  30. 30.
    Cheng, S.C., Wang, J.Z., Chen, L.W., Wang, C.C.: Multichannel wavelength division multiplexing system based on silicon rods of periodic lattice constant of hetero photonic crystal units. Optik—Int. J. Light Electron Opt. 123, 1928–1933 (2012) CrossRefGoogle Scholar
  31. 31.
    RomeroVivasl, J., Chigrin, D.N., Lavrinenko, A.V., Torres, C.M.S.: Resonant add-drop filter based on a photonic quasicrystal. Opt. Express 13, 826–835 (2005) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Meysam Niyazi
    • 1
  • Abdollah Amirkhani
    • 2
  • Mohammad Reza Mosavi
    • 2
  1. 1.Dept. of Electrical and Computer EngineeringUniversity of Sistan and BaluchestanZahedanIran
  2. 2.Dept. of Electrical EngineeringIran University of Science and TechnologyNarmak, TehranIran

Personalised recommendations