Journal of Superconductivity and Novel Magnetism

, Volume 27, Issue 2, pp 569–574 | Cite as

Multiferroic Properties of (Bi0.9Gd0.1FeO)1−x(BaTiO3)x Ceramics

  • Poonam Uniyal
  • Gurmeet Singh Lotey
  • Anamol Gautam
  • N. K. Verma
  • K. L. Yadav
Original Paper

Abstract

Conventional solid-state reaction method has been employed for the synthesis of polycrystalline (Bi0.9Gd0.1FeO)1−x(BaTiO3)x for x=0.1, 0.2 and 0.3, ceramics samples. The effect of BaTiO3 content on the multiferroic properties of Gd-doped BiFeO3 ceramics has been presented. Pure perovskite phase with high density has been obtained by optimizing the synthesis approach, calcination and sintering strategies. Structural analysis carried out using X-ray diffraction confirms the formation of desired morphotropic phase. The dielectric properties have been investigated at different concentration of BaTiO3 as function of temperature, revealing that by increasing the BaTiO3 content dielectric constant increases while dielectric losses decrease. Magnetic study shows that initially saturation magnetization increases with increase in BaTiO3 content up to x=0.1; however, afterwards it decreases for higher concentration of BaTiO3. According to ferroelectric measurements, PE loops (with low coercive field) are observed at room temperature. The remnant polarization (Pr) has been found to be 0.169, 0.619 and 0.760 μC/cm2, respectively, for samples with x=0.1, 0.2 and 0.3. Magnetoelectric coupling in as-synthesized samples has been indirectly deduced by an anomaly observed at magnetic transition temperature.

Keywords

Ceramics Dielectric constant Ferromagnetism Ferroelectric Multiferroics 

References

  1. 1.
    Catalan, G.: Appl. Phys. Lett. 88, 102902 (2006) CrossRefADSGoogle Scholar
  2. 2.
    Hill, N.A.: J. Phys. Chem. B 104, 6694 (2000) CrossRefGoogle Scholar
  3. 3.
    Sosnowska, I., Prezenioslo, R., Fischer, P., Murashov, V.A.: J. Magn. Magn. Mater. 160, 384 (1996) CrossRefADSGoogle Scholar
  4. 4.
    Neaton, J.B., Edrer, C., Waghmare, U.V., Splaldin, N.A., Rabe, K.M.: Phys. Rev. B 71, 014113 (2005) CrossRefADSGoogle Scholar
  5. 5.
    Cheng, Z.X., Wang, X.L., Ozawa, K., Kimura, H.: Appl. Phys. Lett. 40, 703 (2007) Google Scholar
  6. 6.
    Lin, Y.H., Jiang, Q., Wang, Y., Nan, C.W., Chen, L., Yu, J.: Appl. Phys. Lett. 90, 172507 (2007) CrossRefADSGoogle Scholar
  7. 7.
    Cheng, Z.X., Wang, X.L., Dou, S.X., Kimura, H., Ozawa, K.: J. Appl. Phys. 104, 116109 (2008) CrossRefADSGoogle Scholar
  8. 8.
    Yuan, G.L., Or, S.W., Liu, J.M., Liu, Z.G.: Appl. Phys. Lett. 89, 052905 (2006) CrossRefADSGoogle Scholar
  9. 9.
    Uniyal, P., Yadav, K.L.: Mater. Lett. 62, 2858 (2008) CrossRefGoogle Scholar
  10. 10.
    Uniyal, P., Yadav, K.L.: J. Appl. Phys. 105, 07D914 (2009) CrossRefGoogle Scholar
  11. 11.
    Wang, D.H., Goh, W.C., Ning, M., Ong, C.K.: Appl. Phys. Lett. 88, 212907 (2006) CrossRefADSGoogle Scholar
  12. 12.
    Khomchenko, V.A., Kiselev, D.A., Vieira, J.M., Kholkin, A.L., Sa, M.A., Pogorelov, Y.G.: Appl. Phys. Lett. 90, 242901 (2007) CrossRefADSGoogle Scholar
  13. 13.
    Khomchenko, V.A., Kiselev, D.A., Vieira, J.M., Li, J., Kholkin, A.L., Lopes, A.M.L., Pogorelov, Y.G., Araujo, J.P., Maglione, M.J.: Appl. Phys. Lett. 103, 024105 (2008) Google Scholar
  14. 14.
    Kumar, M.M., Srinivas, A., Suryanarayana, S.V.: J. Appl. Phys. 87, 855 (2000) CrossRefADSGoogle Scholar
  15. 15.
    Kim, J.S., Cheon, C., Lee, C., Jang, P.: J. Appl. Phys. 96, 468 (2004) CrossRefADSGoogle Scholar
  16. 16.
    Ozaki, T., Kitagawa, S., Nishihara, S., Hosokoshi, Y., Suzuki, M., Noguchi, Y., Miyayama, M., Mori, S.: Ferroelectrics 385, 155 (2009) CrossRefGoogle Scholar
  17. 17.
    Gotardo, R.A.M., Viana, D.S.F., Dionysio, M.O., Souza, S.D., Garcia, D., Eiras, J.A., Alves, M.F.S., Cotica, L.F., Santos, I.A., Coelho, A.A.: J. Appl. Phys. 112, 104112 (2012) CrossRefADSGoogle Scholar
  18. 18.
    Kumar, M.M., Srinivas, A., Kumar, G.S., Surnarayana, S.V.: J. Phys. Condens. Mater. 11, 8131 (1999) CrossRefADSGoogle Scholar
  19. 19.
    Pradhan, D.K., Choudhary, R.N.P., Rinaldi, C., Katiyar, R.S.: Appl. Phys. Lett. 106, 024102 (2009) Google Scholar
  20. 20.
    Lotey, G.S., Verma, N.K.: J. Nanopart. Res. 14, 742 (2012) CrossRefGoogle Scholar
  21. 21.
    Lotey, G.S., Verma, N.K.: J. Nanopart. Res. 15, 1553 (2013) CrossRefGoogle Scholar
  22. 22.
    Koops, C.G.: Phys. Rev. 83, 121 (1951) CrossRefADSGoogle Scholar
  23. 23.
    Mishra, R.K., Pradhan, D.K., Choudhary, R.N.P., Banerjee, A.: J. Phys. Condens. Matter 20, 045218 (2008) CrossRefADSGoogle Scholar
  24. 24.
    Rai, R., Bdikin, I., Valente, M.A., Kholkin, A.L.: Mater. Chem. Phys. 119, 539 (2010) CrossRefGoogle Scholar
  25. 25.
    Possenriede, E., Jacobs, P., Schirmer, O.F.: J. Phys. Condens. Matter 4, 4719 (1992) CrossRefADSGoogle Scholar
  26. 26.
    Singh, A., Pandey, V., Kotnala, R.K., Pandey, D.: Phys. Rev. Lett. 101, 247602 (2008) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Poonam Uniyal
    • 1
  • Gurmeet Singh Lotey
    • 1
  • Anamol Gautam
    • 2
  • N. K. Verma
    • 1
  • K. L. Yadav
    • 3
  1. 1.School of Physics & Materials ScienceThapar UniversityPatialaIndia
  2. 2.E-Max Institute of Engineering & TechnologyAmbalaIndia
  3. 3.Department of PhysicsIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations