Journal of Superconductivity and Novel Magnetism

, Volume 27, Issue 1, pp 187–194 | Cite as

Effect of Carbon Shell on the Structural and Magnetic Properties of Fe3O4 Superparamagnetic Nanoparticles

Original Paper

Abstract

Carbon-encapsulated iron oxides (Fe3O4/C) with a core/shell structure have been successfully synthesized by using a simple two-step hydrothermal method at 180 C. Fe3O4 core nanoparticles were prepared by coprecipitation under two conditions. Synthesized nanoparticles were characterized by transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. TEM images and FTIR results prove that carbon coated iron oxide is formed and the estimated size for most of them is below 11 nm, which was consistent with the XRD result. The Williamson–Hall (W–H) method has been used to calculate crystallite sizes and lattice strain based on the peak broadening of the Fe3O4 and Fe3O4/C nanoparticles. The results of VSM imply that the Fe3O4 core and core–shell nanoparticles are superparamagnetic. The saturation magnetization of Fe3O4 and Fe3O4/C are 49 emu/gr and 40 emu/gr, respectively. The magnetic behaviors reveal that the amorphous carbon shell can decrease the saturation magnetization of Fe3O4 nanoparticles due to core–shell interface effects and shielding.

Keywords

Fe3O4/C Core/shell Strain Magnetization Superparamagnetic 

Notes

Acknowledgements

The authors thank the University of Guilan for their financial support. The authors also thank Professor Ali Akbar for his valuable advice and Miss Heidarian for the time shared in our project.

References

  1. 1.
    Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Els, V.L., Muller, R.: Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physiochemical characterization and biological applications. Chem. Rev. 108, 2064–2110 (2008) CrossRefGoogle Scholar
  2. 2.
    Gubin, S.P.: Magnetic Nanoparticles, Weinheim (2009) Google Scholar
  3. 3.
    Hua, C.C., Zakaria, S., Farahiyan, R., Liew, T.K., Nguyen, K.L., Abdullah, M., Ahmad, S.: Size-controlled synthesis and characterization of Fe3O4 nanoparticles by chemical coprecipitation method. Sains Malays. 37, 389–394 (2008) Google Scholar
  4. 4.
    Chul, P.K., Wang, F., Morimoto, S., Fujishige, M., Morisako, A., Liu, X., Kim, Y.J., Jung, Y.C., Jang, I.Y., Endo, M.: One-pot synthesis of iron oxide–carbon core–shell particles in supercritical water. Mater. Res. Bull. 44, 1443–1450 (2009) CrossRefGoogle Scholar
  5. 5.
    Nedkova, I., Merodiiskaa, T., Slavova, L., Vandenbergheb, R.E., Kusanoc, Y., Takada, J.: Surface oxidation, size and shape of nano-sized magnetite obtained by co-precipitation. J. Magn. Magn. Mater. 300, 358–367 (2006) CrossRefADSGoogle Scholar
  6. 6.
    Jia, Z., Yujun, W., Yangcheng, L., Jingyu, M., Guangsheng, L.: In situ preparation of magnetic Chitosan/Fe3O4 composite nanoparticles in tiny pools of water-in-oil microemulsion. React. Funct. Polym. 66, 1552–1558 (2006) CrossRefGoogle Scholar
  7. 7.
    Xuan, S., Hao, L., Jiang, W., Gong, X., Hua, Y., Chen, Z.: Preparation of water-soluble magnetite nanocrystals through hydrothermal approach. J. Magn. Magn. Mater. 308, 210–213 (2007) CrossRefADSGoogle Scholar
  8. 8.
    Chaianansutcharit, S., Mekasuwandumrong, O., Praserthdam, P.: Synthesis of Fe2O3 nanoparticles in different reaction media. Ceram. Int. 33, 697–699 (2007) CrossRefGoogle Scholar
  9. 9.
    Rice, G.W.: Laser Chem. Organometal. 273 (1993) Google Scholar
  10. 10.
    Barrera, C., Herrera, A., Zayas, Y., Rinaldi, S.: Surface modification of magnetite nanoparticles for biomedical applications. J. Magn. Magn. Mater. 321, 1397–1399 (2009) CrossRefADSGoogle Scholar
  11. 11.
    Bertitti, G.: Hysteresis in Magnetism. Academic Press, San Diego (1998) Google Scholar
  12. 12.
    Bystrzejewski, M.: Synthesis of carbon-encapsulated iron nanoparticles via solid state reduction of iron oxide nanoparticles. J. Solid State Chem. 184, 1492–1498 (2011) CrossRefADSGoogle Scholar
  13. 13.
    Wei, X.W., Zhu, G.X., Xia, C.J., Yin, Y.: A solution phase fabrication of magnetic nanoparticles encapsulated in carbon. Nanotechnology 17, 4307–4311 (2006) CrossRefADSGoogle Scholar
  14. 14.
    Wang, Z., Xiao, P., He, N.: Synthesis and characteristics of carbon encapsulated magnetic nanoparticles produced by a hydrothermal reaction. Carbon 44, 3277–3284 (2006) CrossRefGoogle Scholar
  15. 15.
    Ruoff, R.S., Lorents, D.C., Chan, B., Malhotra, R., Subramoney, S.: Single crystal metals encapsulated in carbon nanoparticles. Trans. Mater. Res. Soc. Jpn. 16B, 1589–1591 (1994) Google Scholar
  16. 16.
    Borysiuk, J., Grabias, A., Szczytko, J., Bystrzejewski, M., Twardowski, A., Lange, H.: Structure and magnetic properties of carbon encapsulated fe nanoparticles obtained by arc plasma and combustion synthesis. Carbon 46, 1693–1701 (2008) CrossRefGoogle Scholar
  17. 17.
    Bystrzejewsk, M.I., Karoly, Z., Szepvolgyi, J., Kaszuwara, W., Huczko, A., Lange, H.: Continuous synthesis of carbon-encapsulated magnetic nanoparticles with a minimum production of amorphous carbon. Carbon 47, 2040–2048 (2009) CrossRefGoogle Scholar
  18. 18.
    Hayashi, T., Hirono, S., Tomita, M., Umemura, S.: Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon. Nature 381, 772–774 (1996) CrossRefADSGoogle Scholar
  19. 19.
    Wang, Z., Guo, H., Yu, Y., He, N.: Synthesis and characterization of a novel magnetic carrier with its composition of Fe3O4/carbon using hydrothermal reaction. J. Magn. Magn. Mater. 302, 397–404 (2006) CrossRefADSGoogle Scholar
  20. 20.
    Xuan, S., Hao, L., Jiang, W., Gong, X., Hu, Y., Chen, Z.: A facile method to fabricate carbon-encapsulated Fe3O4 core/shell composites. Nanotechnology 18, 035602 (2007) CrossRefADSGoogle Scholar
  21. 21.
    Wang, H., Sun, Y.B., Chen, Q.W., Yu, Y.F., Cheng, K.: Synthesis of carbon-encapsulated superparamagnetic colloidal nanoparticles with magnetic-responsive photonic crystal property. Dalton Trans. 39, 9565–9569 (2010) CrossRefGoogle Scholar
  22. 22.
    Zhanga, S., Hongyun, N., Zhengjun, H., Yaqi, C., Yali, S.: Preparation of carbon coated Fe3O4 nanoparticles and their application for solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water amples. J. Chromatogr. A 1217, 4757–4764 (2010) CrossRefGoogle Scholar
  23. 23.
    Zhang, J., Du, J., Qian, Y., Yin, Q., Zhang, D.: Shape-controlled synthesis and their magnetic properties of hexapod-like, flake-like and chain-like carbon-encapsulated Fe3O4 core/shell composites. Mater. Sci. Eng. B 170, 51–57 (2010) CrossRefGoogle Scholar
  24. 24.
    Liu, Z.L., Ding, Z.H., Yao, K.L., Tao, J., Du, G.H., Lu, Q.H.: Preparation and characterization of polymer-coated core–shell structured magnetic microbeads. J. Magn. Magn. Mater. 265, 98–105 (2003) CrossRefADSGoogle Scholar
  25. 25.
    Mu, Q., Yang, L., Davis, J.C., Vankayala, R., Hwang, K.C., Zhao, J., Yan, B.: Biocompatibility of polymer grafted core/shell iron/carbon nanoparticles. Biomaterials 31, 5083–5090 (2010) CrossRefGoogle Scholar
  26. 26.
    Meng, J., Shi, C., Wei, B., Yu, W., Deng, C., Zhang, X.: Preparation of Fe3O4@C@PANI magnetic microspheres for the extraction and analysis of phenolic compounds in water samples by gas chromatography–mass spectrometry. J. Chromatogr. A 1218, 2841–2847 (2011) CrossRefGoogle Scholar
  27. 27.
    Zheng, J., Liu, Z.Q., Zhao, X.S., Liu, M., Liu, X., Chu, W.: One-step solvothermal synthesis of Fe3O4@C core–shell nanoparticles with tunable sizes. Nanotechnology 23, 165601 (2012) CrossRefADSGoogle Scholar
  28. 28.
    LaMer, V.K., Dinegar, R.H.: Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 72, 4847–4854 (1950) CrossRefGoogle Scholar
  29. 29.
    Mahmoudi, M., Sant, S., Wang, B., Laurent, S., Sen, T.: Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev. 63, 24–46 (2011) CrossRefGoogle Scholar
  30. 30.
    Tominaga, M., Matsumoto, M., Soejima, K., Taniguchi, I.: Size control for two-dimensional iron oxide nanodots derived from biological molecules. J. Colloid Interface Sci. 299, 761–765 (2006) CrossRefGoogle Scholar
  31. 31.
    Sun, X., Li, Y.: Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem., Int. Ed. Engl. 43, 597–601 (2004) CrossRefGoogle Scholar
  32. 32.
    Duhan, S., Devi, S.: Synthesis and structural characterization of iron oxide-silica nanocomposites prepared by the sol gel method. Int. J. Electr. Eng. 2, 89–92 (2010) Google Scholar
  33. 33.
    Zhang, Z., Kong, J.: Novel magnetic Fe3O4@C nanoparticles as adsorbents for removal of organic dyes from aqueous solution. J. Hazard. Mater. 193, 325–329 (2011) CrossRefGoogle Scholar
  34. 34.
    Massart, R.: Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 17, 1247–1248 (1981) CrossRefADSGoogle Scholar
  35. 35.
    Ni, S., Lin, S., Pan, Q., Yang, F., Huang, K., Wang, X., He, D.: Synthesis of core–shell α-Fe2O3 hollow micro-spheres by a simple two-step process. J. Alloys Compd. 478, 876–879 (2009) CrossRefGoogle Scholar
  36. 36.
    Khorsand Zak, A., Abd Majid, W.H., Abrishami, M.E., Yousefi, R.: X-ray analysis of ZnO nanoparticles by Williamsone–Hall and size-strain plot methods. Solid State Sci. 13, 251–256 (2011) CrossRefADSGoogle Scholar
  37. 37.
    Xia, H., Cui, B., Zhou, J., Zhang, L., Zhang, J., Guo, X., Guo, H.: Synthesis and characterization of Fe3O4@C@Ag nanocomposites and their antibacterial performance. Appl. Surf. Sci. 257, 9397–9402 (2011) CrossRefADSGoogle Scholar
  38. 38.
    Zhang, Y., Liu, X., Nie, J., Yu, L., Zhong, Y., Huang, C.: Improve the catalytic activity of α-Fe2O3 particles in decomposition of ammonium perchlorate by coating amorphous carbon on their surface. J. Solid State Chem. 184, 387–390 (2011) CrossRefADSGoogle Scholar
  39. 39.
    Skomski, R.: Simple Models of Magnetism, Oxford (2008) Google Scholar
  40. 40.
    Salimian, S., Farjami Shayesteh, S.: Structural, optical and magnetic properties of Mn-doped CdS diluted magnetic semiconductor nanoparticles. J. Supercond. Nov. Magn. 25, 2009–2014 (2012) CrossRefGoogle Scholar
  41. 41.
    Frenkel, J., Dorfman, J.: Spontaneous and induced magnetisation in ferromagnetic bodies. Nature 126, 274–275 (1930) CrossRefADSMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Nanostructure Lab, Physics DepartmentUniversity of GuilanRashtIran

Personalised recommendations