Journal of Superconductivity and Novel Magnetism

, Volume 26, Issue 11, pp 3277–3286 | Cite as

Structural, Electrical, and Microstructure Properties of Nanostructured Calcium Doped Ba-Hexaferrites Synthesized by Sol-Gel Method

  • Ihsan Ali
  • M. U. Islam
  • M. S. Awan
  • Mukhtar Ahmad
  • M. Asif Iqbal
Original Paper


Nanostructured M-type hexaferrite Ba1−xCaxFe11.5Cr0.5O19 (x=0.0–0.5) powders have been synthesized by means of the sol-gel autocombustion method. The materials are characterized by differential scanning calorimetry, thermogravimetry, Fourier transform infra-red spectroscopy, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and vibrating sample magnetometry. X-ray diffraction analysis confirms the formation of M-type hexagonal phase and few traces of α-Fe2O3 are also observed. The c/a ratio falls in the expected range from a value of 3.97 to 3.94 of M-type hexaferrites. The average crystallite size is found to be in the range 15 to 36 nm, which is good enough to obtain the suitable signal-to-noise ratio in the high-density recording media. DC electrical resistivity at room temperature enhances up to 11.2×109 Ω cm (x=0.4) and then drops upon increasing the Ca2+ contents further. The magnetic properties such as saturation magnetization (Ms), remanence (Mr), squareness ratio (Mr/Ms) and coercivity (Hc) are calculated from the MH-loops. The maximum magnetization and remanence reduces from a value of 52 to 33 and 33 to 16 emu/g, respectively, which attributes to the decrease of magnetic moment, and hence reduction in the superexchange interaction. The coercivity enhances from 4378 to 4706 Oe, which attributes to the increase in magnetocrystalline anisotropy due to the reduction of particle size. Owing to these properties, the synthesized nanomaterials can be considered useful for high-density recording media and permanent magnets.


Hexaferrites Nanoparticles Sol-gel Magnetic properties X-ray diffraction 


  1. 1.
    Qiu, J., Lan, L., Zhang, H., Gu, M.: Effect of titanium dioxide on microwave absorption properties of barium ferrite. J. Alloys Compd. 453, 261 (2008) CrossRefGoogle Scholar
  2. 2.
    Han, M., Ou, Y., Chen, W., Deng, L.: Magnetic properties of Ba-M-type hexagonal ferrites prepared by the sol–gel method with and without polyethylene glycol added. J. Alloys Compd. 474, 185 (2009) CrossRefGoogle Scholar
  3. 3.
    Kaur, B., Bhat, M., Licci, F., Kumar, R., Bamzai, K.K., Kotru, P.N.: Dielectric characteristics of substituted M-type strontium hexaferrite crystals and their modifications on swift heavy ion irradiation. Mater. Chem. Phys. 103, 255–263 (2007) CrossRefGoogle Scholar
  4. 4.
    Ogasawara, T., Oliveria, M.A.S.: Microstructure and hysteresis curves of the barium hexaferrite from co-precipitation by organic agent. J. Magn. Magn. Mater. 217, 147 (2000) CrossRefADSGoogle Scholar
  5. 5.
    Bercoff, P.G., Bertorello, H.R.: Magnetic properties of Ba hexaferrite and Fe compounds produced by milling and annealing in air. J. Magn. Magn. Mater. 205, 261 (1999) CrossRefADSGoogle Scholar
  6. 6.
    Sable, S.N., Rewatkar, K.G., Nanoti, V.M.: Structural and magnetic behavioral improvisation of nanocalcium hexaferrites. Mater. Sci. Eng. B, Solid-State Mater. Adv. Technol. 168, 156–160 (2010) CrossRefGoogle Scholar
  7. 7.
    Popa, P.D., Rezlescu, E., Doroftei, C., Rezlescu, N.: Influence of calcium on properties of strontium and bariumferrites for magnetic media prepared by combustion. J. Optoelectron. Adv. Mater. 7, 1553–1556 (2005) Google Scholar
  8. 8.
    Ounnunkada, S., Winotai, P.: Properties of Cr-substituted M-type barium ferrites prepared by nitrate-citrate gel-autocombustion process. J. Magn. Magn. Mater. 301, 292–300 (2006) CrossRefADSGoogle Scholar
  9. 9.
    Iqbal, M.J., Ashiq, M.N., Gómezc, P.H.: Influence of annealing temperature and doping rate on the magnetic properties of Zr–Mn substituted Sr-hexaferrite nanoparticles. J. Alloys Compd. 500, 113–116 (2010) CrossRefGoogle Scholar
  10. 10.
    Surig, C., Hempel, K.A., Bonnenbrog, D.: Hexaferrite particles prepared by sol-gel technique. IEEE Trans. Magn. 30, 4092–4094 (1994) CrossRefADSGoogle Scholar
  11. 11.
    Sudakar, C., Subbanna, G.N., Kutty, T.R.N.: Nanoparticles of barium hexaferrite by gel to crystallite conversion and their magnetic properties. J. Electroceram. 6, 123 (2001) CrossRefGoogle Scholar
  12. 12.
    Mali, A., Ataie, A.: Structural characterization of nano-crystalline BaFe12O19 powders synthesized by sol-gel combustion method. Scr. Mater. 53, 1066–1067 (2005) CrossRefGoogle Scholar
  13. 13.
    Rezlescu, N., Doroftei, C., Rezlescu, E., Popa, P.D.: The influence of heat-treatment on microstructure and magnetic properties of rare-earth substituted SrFe12O19. J. Alloys Compd. 451, 492–496 (2008) CrossRefGoogle Scholar
  14. 14.
    Xu, G., Ma, H., Zhang, M., Zhou, J., Yue, Y., He, Z.: Influence of pH on characteristics of BaFe12O19 powder prepared by sol–gel auto-combustion. J. Magn. Magn. Mater. 301, 383–388 (2006) CrossRefADSGoogle Scholar
  15. 15.
    Moshaie, R.N., Ataie, A., Seyyed Ebrahimi, S.A.: Processing of nano-structured barium hexaferrite by self-propagating high temperature synthesis (SHS) using nitrate precursor. J. Alloys Compd. 429, 324–328 (2007) CrossRefGoogle Scholar
  16. 16.
    Iqbal, M.J., Ashiq, M.N., Gul, I.H.: Physical, electrical and dielectric properties of Ca-substituted strontium hexaferrite (SrFe12O19) nanoparticles synthesized by co-precipitation method. J. Magn. Magn. Mater. 322, 1720 (2010) CrossRefADSGoogle Scholar
  17. 17.
    Fang, Q.Q., Cheng, H., Haung, K., Wang, J., Li, R., Jiao, Y.: Doping effect on crystal structure and magnetic properties of chromium-substituted strontium hexaferrite nanoparticles. J. Magn. Magn. Mater. 294, 281–286 (2005) CrossRefADSGoogle Scholar
  18. 18.
    Wagner, T.R.: Preparation and crystal structure analysis of magnetoplumbite-type BaGa12O19. J. Solid State Chem. 136, 120 (1998) CrossRefADSGoogle Scholar
  19. 19.
    Yongfei, W., Qiaoling, L., Cunrui, Z., Hongxia, J.: Preparation and magnetic properties of different morphology nano-SrFe12O19 particles prepared by sol-gel method. J. Alloys Compd. 467, 284–287 (2009) CrossRefGoogle Scholar
  20. 20.
    Ahmad, M., Aen, F., Islam, M.U., Niazi, S.B., Rana, M.U.: Structural, physical, magnetic and electrical properties of La-substituted W-type hexagonal ferrites. Ceram. Int. 37, 3691–3696 (2011) CrossRefGoogle Scholar
  21. 21.
    Ahmed, M.A., Okasha, N., Oaf, M., Kershi, R.M.: The role of Mg substitution on the microstructure and magnetic properties of Ba Co Zn W-type hexagonal ferrites. J. Magn. Magn. Mater. 314, 128–134 (2007) CrossRefADSGoogle Scholar
  22. 22.
    Che, S., Wang, J., Chen, Q.: Soft magnetic nanoparticles of BaFe12O19 fabricated under mild conditions. J. Phys. Condens. Matter 15, L335–L339 (2003) CrossRefADSGoogle Scholar
  23. 23.
    Fang, H.C., Yang, Z., Ong, C.K., Lie, Y., Wang, C.S.: Preparation and magnetic properties of (Zn–Sn) substituted barium hexaferrite nanoparticles for magnetic recording. J. Magn. Magn. Mater. 187, 129–135 (1998) CrossRefADSGoogle Scholar
  24. 24.
    Jacobo, S.E., Civali, L., Blesa, M.A.: Evolution of the magnetic properties during the thermal treatment of barium hexaferrite precursors obtained by coprecipitation from barium ferrate (VI) solutions. J. Magn. Magn. Mater. 37, 260 (2003) Google Scholar
  25. 25.
    Verwey, E.J.W., De’Boer, J.H.: Cation arrangement in spinels. Recl. Trav. Chim. Pays-Bas 55, 531 (1936) CrossRefGoogle Scholar
  26. 26.
    Lechevallier, L., Le Breton, J.M., Wang, J.F., Harris, I.R.: Structural analysis of hydrothermally synthesized Sr1−xSmxFe12O19 hexagonal ferrites. J. Magn. Magn. Mater. 269, 192–196 (2004) CrossRefADSGoogle Scholar
  27. 27.
    El-Saadawy, M.: DC conductivity for hexaferrites of the Zn2−xCuxBa1Fe16O27 system. J. Magn. Magn. Mater. 219, 69–72 (2000) CrossRefADSGoogle Scholar
  28. 28.
    Gupta, N., Dimri, M.C., Kashyap, S.C., Dube, D.C.: Processing and properties of cobalt-substituted lithium ferrite in the GHz frequency range. Ceram. Int. 31, 171–176 (2005) CrossRefGoogle Scholar
  29. 29.
    Ashiq, M.N., Iqbal, M.J., Gul, I.H.: Structural, magnetic and dielectric properties of Zr–Cd substituted strontium hexaferrite (SrFe12O19) nanoparticles. J. Alloys Compd. 487, 341–345 (2009) CrossRefGoogle Scholar
  30. 30.
    Hussain, S., Maqsood, A.: Structural and electrical properties of Pb-doped Sr-hexaferrites. J. Alloys Compd. 466, 293–298 (2008) CrossRefGoogle Scholar
  31. 31.
    Maaz, K., Mumtaz, A., Hasanain, S.K., Ceylan, A.: Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical method. J. Magn. Magn. Mater. 308, 289 (2007) CrossRefADSGoogle Scholar
  32. 32.
    Litsardakis, G., Manolakis, I., Efthimiadis, K.: Structural and magnetic properties of barium hexaferrites with Gd–Co substitution. J. Alloys Compd. 427, 194–198 (2007) CrossRefGoogle Scholar
  33. 33.
    Li, Y., Liu, R., Zhang, Z., Xiong, C.: Synthesis and characterization of nanocrystalline BaFe9.6Co0.8Ti0.8M0.8O19 particles. Mater. Chem. Phys. 64, 256 (2000) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ihsan Ali
    • 1
  • M. U. Islam
    • 1
  • M. S. Awan
    • 2
  • Mukhtar Ahmad
    • 1
  • M. Asif Iqbal
    • 1
  1. 1.Department of PhysicsBahauddin Zakariya UniversityMultanPakistan
  2. 2.Center for Micro and Nano Devices, Department of PhysicsCOMATS Institute of Information TechnologyIslamabadPakistan

Personalised recommendations