Influence of Geometry on the Memristive Behavior of the Domain Wall Spintronic Memristors and Its Applications for Measurement

  • H. MahmoudiEmail author
  • V. Sverdlov
  • S. Selberherr
Original Paper


A memristor is characterized by its electrical memory resistance (memristance), which is a function of the historic profile of the applied current (voltage). This unique ability allows reducing charge- and flux-based measurements to straightforward resistance measurements. The memristive measurement seeks a memristor with a constant modulation of the memristance (memductance) with respect to the charge (flux) for charge (flux)-based measurements. In this work the geometry dependent memristive behavior of a spintronic device is studied to demonstrate the possibility of both charge- and flux-based sensing, using spintronic memristors with different device geometries. The dynamic properties of a propagating magnetic domain wall in different geometrical structures make the spintronic memristor suitable for the charge-based capacitance and flux-based inductance measurements.


Magnetic domain wall Memristive measurement Spintronic memristor 



The work is supported by the European Research Council through the grant #247056 MOSILSPIN.


  1. 1.
    Chua, L.O.: Memristor – the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971) CrossRefGoogle Scholar
  2. 2.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008) ADSCrossRefGoogle Scholar
  3. 3.
    Wang, X., Chen, Y., Xi, H., Li, H., Dimitrov, D.: Spintronic memristor through spin torque induced magnetization motion. IEEE Electron Device Lett. 30, 294–297 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    Berger, L.: Analysis of measured transport properties of domain walls in magnetic nanowires and films. Phys. Rev. B 73, 014407 (2006) ADSCrossRefGoogle Scholar
  5. 5.
    Wunderlich, J., Ravelosona, D., Chappert, C., Cayssol, F., Mathet, V., Ferre, J., Jamet, j.-P., Thiaville, A.: Influence of geometry on domain wall propagation in a mesoscopic wire. IEEE Trans. Magn. 37, 2104–2107 (2001) ADSCrossRefGoogle Scholar
  6. 6.
    Mahmoudi, H., Sverdlov, V., Selberherr, S.: Novel memristive charge- and flux-based sensors. In: Proceedings of the 8th Conference on Ph.D. Research in Microelectronics & Electronics (PRIME), pp. 15–18 (2012) Google Scholar
  7. 7.
    Tatara, G., Kohno, H.: Theory of current-driven domain wall motion: spin transfer versus momentum transfer. Phys. Rev. Lett. 92, 086601 (2004) ADSCrossRefGoogle Scholar
  8. 8.
    Thomas, L., Parkin, P.: Current induced domain-wall motion in magnetic nanowires. In: Kronmüller, H., Parkin, S. (eds.) Handbook of Magnetism and Advanced Magnetic Materials, pp. 942–982. Wiley, Chichester (2007) Google Scholar
  9. 9.
    Duine, R.A., Nunez, A.S., MacDonald, A.H.: Thermally assisted current-driven domain-wall motion. Phys. Rev. Lett. 98, 056605 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    Jung, S.W., Kim, W., Lee, T.D., Lee, K.J., Lee, H.W.: Current-induced domain wall motion in a nanowire with perpendicular magnetic anisotropy. Appl. Phys. Lett. 92, 202508 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    Schryer, N.L., Walker, L.R.: The motion of 180° domain wall in uniform dc magnetic field. J. Appl. Phys. 45, 5406 (1974) ADSCrossRefGoogle Scholar
  12. 12.
    Mougin, A., Cormier, M., Adam, J.P., Metaxas, P.J., Ferré, J.: Domain wall mobility, stability and walker breakdown in magnetic nanowires. Europhys. Lett. 78, 57007 (2007) ADSCrossRefGoogle Scholar
  13. 13.
    Yamaguchi, A., Ono, T., Nasu, S., Miyake, K., Mibu, K., Shinjo, T.: Erratum: real-space observation of current-driven domain wall motion in submicron magnetic wires. Phys. Rev. Lett. 92, 077205 (2004) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Institute for MicroelectronicsTechnische Universität WienWienAustria

Personalised recommendations