Noise-Assisted Microwave Up-conversion by Vortices in Thin-Film Superconductors with a dc-Biased Washboard Pinning Potential

  • Valerij A. Shklovskij
  • Oleksandr V. Dobrovolskiy
  • Michael Huth
Original Paper


So far the main theoretical basis for understanding and optimization of the microwave properties of vortices in type II superconductors has been relying upon the Coffey–Clem (CC) approach for the linear impedance at nonzero temperature. However, the CC model does not account for the non-linear response and the possibility to control it by changing the value of the dc transport current in a superconducting sample. For this reason, we have exactly solved the Langevin equation for the two-dimensional non-linear vortex dynamics in a dc bias-tilted cosine pinning potential in the presence of an ac current of arbitrary amplitude and frequency ω and have, thereby, substantially generalized the CC results. In this work we analyze the behavior of the non-linear response on -frequency in a wide range of dc and ac current densities, ω, and temperature. The -response is found to depend strongly on all these parameters, as exemplified for the third-harmonic (k=3) transformation coefficient Z 3. The parametric window for the most enhanced up-conversion is presented. The predicted effects can be experimentally verified in thin-film superconductors with some pinning potential of the washboard type.


Microwave up-conversion Non-linear impedance Washboard pinning potential Generation of higher harmonics 



O.V.D. gratefully acknowledges financial support by the Deutsche Forschungsgemeinschaft (DFG) through Grant No. DO 1511/2-1.


  1. 1.
    Silva, E., Pompeo, N., Sarti, S., Amabile, C.: Vortex State Microwave Response in Superconducting Cuprates, pp. 201–243. Nova Science, Hauppauge (2006), Chap. 1 Google Scholar
  2. 2.
    Gittleman, J.I., Rosenblum, B.: Phys. Rev. Lett. 16, 734 (1966) ADSCrossRefGoogle Scholar
  3. 3.
    Pompeo, N., Silva, E.: Phys. Rev. B 78, 094503 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    Jin, B.B., Zhu, B.Y., Wördenweber, R., de Souza Silva, C.C., Wu, P.H., Moshchalkov, V.V.: Phys. Rev. B 81, 174505 (2010) ADSCrossRefGoogle Scholar
  5. 5.
    Wördenweber, R., Hollmann, E., Schubert, J., Kutzner, R., Panaitov, G.: Phys. Rev. B 85, 064503 (2012) ADSCrossRefGoogle Scholar
  6. 6.
    Blatter, G., Feigel’man, M.V., Geshkenbein, V.B., Larkin, A.I., Vinokur, V.M.: Rev. Mod. Phys. 66, 1125 (1994) ADSCrossRefGoogle Scholar
  7. 7.
    Coffey, M.W., Clem, J.R.: Phys. Rev. Lett. 67, 386 (1991) ADSCrossRefGoogle Scholar
  8. 8.
    Wilker, C., Zhi-Yuan, S., Pang, P., Holstein, W.L., Face, D.W.: IEEE Trans. Appl. Supercond. 5, 1665 (1995) CrossRefGoogle Scholar
  9. 9.
    Willemsen, B.A., Kihlstrom, K.E., Dahm, T., Scalapino, D.J., Gowe, B., Bonn, D.A., Hardy, W.N.: Phys. Rev. B 58, 6650 (1998) ADSCrossRefGoogle Scholar
  10. 10.
    Gallitto, A., Vigni, M.L.: Physica C, Supercond. 305(1–2), 75 (1998) ADSCrossRefGoogle Scholar
  11. 11.
    Booth, J., Vale, L., Ono, R.: IEEE Trans. Appl. Supercond. 11, 1387 (2001) CrossRefGoogle Scholar
  12. 12.
    Pestov, E., Nozdrin, Y., Kurin, V.: IEEE Trans. Appl. Supercond. 11, 131 (2001) CrossRefGoogle Scholar
  13. 13.
    Shklovskij, V.A., Dobrovolskiy, O.V.: Phys. Rev. B 78, 104526 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    Shklovskij, V.A., Dobrovolskiy, O.V.: J. Phys. Conf. Ser. 150(5), 052241 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    Shklovskij, V.A.: J. Phys. Conf. Ser. 150(5), 052240 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    Shklovskij, V.A., Dobrovolskiy, O.V.: Phys. Rev. B 84, 054515 (2011) ADSCrossRefGoogle Scholar
  17. 17.
    Pompeo, N., Silva, E., Sarti, S., Attanasio, C., Cirillo, C.: Physica C, Supercond. 470(19), 901 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    Janjušević, D., Grbić, M.S., Požek, M., Dulčić, A., Paar, D., Nebendahl, B., Wagner, T.: Phys. Rev. B 74, 104501 (2006) ADSCrossRefGoogle Scholar
  19. 19.
    Soroka, O.K., Shklovskij, V.A., Huth, M.: Phys. Rev. B 76, 014504 (2007) ADSCrossRefGoogle Scholar
  20. 20.
    Palstra, T.T.M., Batlogg, B., Schneemeyer, L.F., Waszczak, J.V.: Phys. Rev. Lett. 61, 1662 (1988) ADSCrossRefGoogle Scholar
  21. 21.
    Shklovskij, V.A., Dobrovolskiy, O.V., Huth, M.: In: Conference Program SCC-2011, p. 85 (2011) Google Scholar
  22. 22.
    Coffey, W.T., Déjardin, J.L., Kalmykov, Y.P.: Phys. Rev. B 62, 3480 (2000) ADSCrossRefGoogle Scholar
  23. 23.
    Reimann, P., Van den Broeck, C., Linke, H., Hänggi, P., Rubi, J.M., Pérez-Madrid, A.: Phys. Rev. Lett. 87, 010602 (2001) ADSCrossRefGoogle Scholar
  24. 24.
    Boguñá, M., Porrà, J.M., Masoliver, J., Lindenberg, K.: Phys. Rev. E 57, 3990 (1998) ADSCrossRefGoogle Scholar
  25. 25.
    Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Rev. Mod. Phys. 70, 223 (1998) ADSCrossRefGoogle Scholar
  26. 26.
    Jung, P., Hänggi, P.: Phys. Rev. A 44, 8032 (1991) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Valerij A. Shklovskij
    • 1
    • 2
  • Oleksandr V. Dobrovolskiy
    • 3
  • Michael Huth
    • 3
  1. 1.Institute for Theoretical PhysicsNSC-KIPTKharkovUkraine
  2. 2.Department of PhysicsKharkiv National UniversityKharkovUkraine
  3. 3.Physikalisches InstitutGoethe-UniversitätFrankfurt am MainGermany

Personalised recommendations