Effect of Nano ZnO Doping on the Nature of Pinning of MgB2 Superconductors
- 205 Downloads
- 1 Citations
Abstract
The paper reports the JC(H,T) of nano-ZnO doped MgB2 samples calculated from M–H loop measurements. Volume pinning forces at different temperatures have been evaluated as a function of the field from the JC–H data. Two different scaling laws, one by Fietz and Webb and another one by M. Eisterer, are used here to analyze the pinning forces. All samples show the scaling behavior, which confirms the existence of grain boundary pinning. The XRD and R–T data show the substitution of Zn at Mg sites. The anisotropy in the sample is found to decrease with the doping of the nano-ZnO. The improvement in the JC(H,T) of the sample with the nano-ZnO doping is due to decrease in the anisotropy and increase in the volume pinning forces. The 2 % nano-ZnO doping is found to be the optimal value in order to achieve the highest JC(H,T) in these samples.
Keywords
MgB2 Nano-zinc oxide Critical current Pinning force Scaling and anisotropyNotes
Acknowledgements
This work was supported by NPST program by King Saud University, Riyadh, under the project number 08-ADV397-2.
References
- 1.Larbalestier, D.C., Gurevich, A., Feldmann, D.M., Polyanskii, A.A.: High T c superconducting materials for electric power applications. Nature 414, 368–377 (2001) ADSCrossRefGoogle Scholar
- 2.Susner, M.A., Sumption, M.D., Bhatia, M., Peng, X., Tomsic, M.J., Rindfleisch, M.A., Collings, E.W.: Influence of Mg/B ratio and SiC doping on microstructure and high field transport J c in MgB2 strands. Physica C 456, 180–187 (2007) ADSCrossRefGoogle Scholar
- 3.Putti, M., Affronte, M., Ferdeghini, C., Manfrinetti, P., Trantini, C., Lehmann, E.: Observation of the crossover from two-gap to single-gap superconductivity through specific heat measurements in neutron-irradiated MgB2. Phys. Rev. Lett. 96, 077003 (2006) ADSCrossRefGoogle Scholar
- 4.Gumbel, A., Eckert, J., Fuchs, G., Nenkov, K., Muller, K.H., Schultz, L.: Improved superconducting properties in nanocrystalline bulk MgB2. Appl. Phys. Lett. 80, 2725 (2002) ADSCrossRefGoogle Scholar
- 5.Singh, K.P., Awana, V.P.S., Balamurugan, S., Shahabuddin, M., Singh, H.K., Husain, M., Kishan, H., Bauminger, E.R., Felner, I.: Nano Fe3O4 induced fluxoid jumps and low field enhanced critical current density in MgB2 superconductor. J. Supercond. Nov. Magn. 21, 39–44 (2008) CrossRefGoogle Scholar
- 6.Ansari, I.A., Shahabuddin, M., Zig, K.A., Salem, A.F., Awana, V.P.S., Husain, M., Kishan, H.: The effect of nano-alumina on structural and magnetic properties of MgB2 superconductors. Supercond. Sci. Technol. 20, 827 (2007) ADSCrossRefGoogle Scholar
- 7.Dou, S.X., Soltanian, S., Horvat, J., Wang, X.L., Munroe, P., Zhou, S.H., Ionescu, M., Liu, H.K., Tomsic, M.: Enhancement of the critical current density and flux pinning of MgB2 superconductor by nanoparticle SiC doping. Appl. Phys. Lett. 81, 3419 (2002) ADSCrossRefGoogle Scholar
- 8.Yamada, H., Hirakawa, M., Kumakura, H., Matsumoto, A., Kitaguchi, H.: Critical current densities of powder-in-tube MgB2 tapes fabricated with nanometer-size Mg powder. Appl. Phys. Lett. 84, 1728–1730 (2004) ADSCrossRefGoogle Scholar
- 9.Fietz, W.A., Webb, W.W.: Hysteresis in superconducting alloys—temperature and field dependence of dislocation pinning in niobium alloys. Phys. Rev. 178, 657–667 (1969) ADSCrossRefGoogle Scholar
- 10.Dew-Hughes, D.: The role of grain boundaries in determining J c in high-field high-current superconductors. Philos. Mag., B 55, 459–479 (1987) CrossRefGoogle Scholar
- 11.Zehetmayer, M., Eisterer, M., Jun, J., Kazakov, S.M., Karpinski, J., Weber, H.W.: Magnetic field dependence of the reversible mixed-state properties of superconducting MgB2 single crystals and the influence of artificial defects. Phys. Rev. B 70, 214516 (2004) ADSCrossRefGoogle Scholar
- 12.Lyard, L., Szabo, P., Klein, T., Marcus, J., Marcenat, C., Kim, K.H., Kang, B.W., Lee, H.S., Lee, S.I.: Anisotropies of the lower and upper critical fields in MgB2 single crystals. Phys. Rev. Lett. 92, 057001 (2004) ADSCrossRefGoogle Scholar
- 13.Martínez, E., Mikheenko, P., Martínez-López, M., Millán, A., Bevan, A., Abell, J.S.: Flux pinning force in bulk MgB2 with variable grain size. Phys. Rev. B 75, 134515 (2007) ADSCrossRefGoogle Scholar
- 14.Klie, R.F., Idrobo, J.C., Browning, N.D., Regan, K.A., Rogado, N.S., Cava, R.J.: Direct observation of nanometer-scale Mg- and B-oxide phases at grain boundaries in MgB2. Appl. Phys. Lett. 79, 1837–1839 (2001) ADSCrossRefGoogle Scholar
- 15.Jiang, J., Senkowicz, B.J., Larbalestier, D.C., Hellstrom, E.E.: Influence of boron powder purification on the connectivity of bulk MgB2. Supercond. Sci. Technol. 19, L33 (2006) ADSCrossRefGoogle Scholar
- 16.Rowell, J.M.: The widely variable resistivity of MgB2 samples. Supercond. Sci. Technol. 16, R17 (2003) ADSCrossRefGoogle Scholar
- 17.Eisterer, M.: Magnetic properties and critical currents of MgB2. Supercond. Sci. Technol. 20, R47 (2007) ADSCrossRefGoogle Scholar
- 18.Singh, K.P., Awana, V.P.S., Shahabuddin, M., et al.: Phase formation and superconductivity of Fe-tube encapsulated and vacuum-annealed MgB2. Mod. Phys. Lett. B 20, 1763–1769 (2006) ADSCrossRefGoogle Scholar
- 19.Shahabuddin, M., Alzayed, N.S.: Design of ac susceptometer using closed cycle helium cryostat. Phys. Status Solidi C 9, 3002–3006 (2006) ADSCrossRefGoogle Scholar
- 20.Eistrer, M.: Calculation of the volume pinning force in MgB2 superconductors. Phys. Rev. B 77, 144524 (2008) ADSCrossRefGoogle Scholar